- •Глава 1 Биологические основы психики
- •Мозг и психические процессы
- •Краткое описание строения нервной системы
- •Клетки мозга
- •Нейроны
- •21 Глия
- •Передача информации в цнс
- •Синаптическая передача информации
- •Медиаторы
- •Функции нейрона
- •Типы нервных волокон
- •Глава 2 Методы получения психофизиологической информации
- •Регистрация психофизиологических параметров
- •Электроэнцефалограмма и методы ее регистрации
- •Регистрация импульсной активности нервных клеток
- •Регистрация вызванных потенциалов мозга человека и потенциалов, связанных с событиями
- •Оценка локального кровотока мозга
- •Томографические методы
- •Компьютерная томография
- •Позитронно-эмиссионная томография (пэт)
- •Визуализация строения мозга с помощью метода ядерно-магнитного резонанса
- •Реоэнцефалография
- •Электромиография
- •Электроокулография
- •Кожно -гальваническая реакция
- •Ассоциативный эксперимент как инструмент анализа психических явлений
- •Глава 3 Психофизиологические механизмы адаптивного поведения
- •Определение адаптации
- •Общий адаптационный синдром
- •Стадии развития стресса
- •Особенности острого и хронического стресса
- •Индивидуальные особенности реагирования людей на стресс
- •Выученная беспомощность
- •Эмоциональной информации
- •Механизмы иммунодепрессии, обусловленной стрессом
- •Центральная регуляция стрессовых реакций
- •Центральные механизмы адаптации
- •Роль функциональной асимметрии мозга в процессе адаптации
- •Срыв процесса адаптации и незавершенная адаптация
- •Психофизиология труда, связанная с постоянными процессами адаптации
- •Глава 4 Функциональная асимметрия мозга
- •Типы асимметрий
- •История исследований функциональной асимметрии мозга
- •Морфологическая асимметрия полушарий мозга
- •Биохимия и асимметрия полушарий головного мозга
- •Клинические данные о функциональной неравнозначности полушарий
- •Методы исследования функциональной асимметрии мозга
- •Исследования функциональной специализации полушарий мозга в норме
- •Специализация левого и правого полушарий
- •Совместная деятельность полушарий мозга
- •Леворукость и праворукость
- •Происхождение леворукости
- •Обучение и специализация полушарий
- •Рукость и функциональная асимметрия мозга
- •Возрастные особенности становления рукости
- •Глава 5 Психофизиология восприятия
- •Организация систем восприятия
- •Сенсорные системы
- •126 Зрительное восприятие
- •Сетчатка и ее функции
- •132 Передача информации из глаза в мозг
- •Анализ зрительной информации
- •Стабилизация изображения на сетчатке
- •Константность восприятия
- •Видеоэкология и агрессивная городская среда
- •Глава 6 Психофизиология восприятия (продолжение)
- •Анатомия среднего и внутреннего уха
- •Центральная часть слухового анализатора
- •Восприятие высоты тона
- •158 Локализация источника звука
- •Костная проводимость
- •Вестибулярный аппарат
- •Вестибулярная система
- •Передача информации в центральную нервную систему
- •162 Вкусовое восприятие
- •Вкусовые стимулы
- •Рецепторы вкуса
- •Проводящая система вкусовых ощущений
- •. Обонятельное восприятие
- •Вещества, вызывающие запах
- •Структура обонятельной системы
- •Соматосенсорная и висцеральная системы
- •Строение кожи и ее рецепторов
- •Восприятие температуры
- •Болевая (ноцицептивная) чувствительность
- •Пути передачи соматосенсорной информации в мозг
- •Глава 7 Психофизиология движения
- •179 Строение и функции мышечного аппарата
- •Рефлекторный контроль движения
- •Моносинаптический рефлекс
- •Полисинаптический рефлекс
- •Нервные пути, участвующие в реализации двигательной активности
- •Роль базальных ганглиев в регуляции движения
- •Роль мозжечка и ретикулярной формации в управлении движением
- •Роль лобной и теменной коры мозга в управлении движением
- •Иерархичность управления движением
- •Соотношение произвольной и непроизвольной регуляции движений
- •Глава 8 Психофизиология бодрствования
- •Состояние бодрствования
- •Цикл сон — бодрствование
- •Уровни активации и эффективность психических процессов
- •204 Роль ретикулярной формации среднего мозга в формировании состояния бодрствования
- •Роль других структур в регуляции бодрствования
- •Использование теории хаоса для описания состояния человека
- •Глава 9 Психофизиология сна
- •Сон как особое состояние сознания
- •Стадии медленного сна
- •Парадоксальный сон
- •Позы спящих людей
- •Нейронные структуры, ответственные за развитие стадий сна
- •Периодичность стадий сна
- •Влияние состояния человека на рисунок сна
- •Память и сон
- •Возрастные особенности сна Депривация сна
- •Особенности сна у животных
- •Гипотезы, объясняющие причины сна
- •Нарушения сна
- •Глава 10 Психофизиология внимания
- •Определение внимания и его виды
- •Модель внимания Бродбента и ее экспериментальная проверка
- •Внимание и функциональное состояние мозга
- •Структуры мозга, включенные в регуляцию потока сигналов
- •Роль левого и правого полушарий мозга в процессе внимания
- •Внимание и ориентировочный рефлекс
- •Нервная модель стимула
- •Глава 11 Психофизиология неосознаваемых процессов
- •Неосознаваемые содержания психики
- •Требования к исследованию неосознаваемых психических явлений
- •253 Неоднозначность осознанного отчета и неосознанного ответа при восприятии эмоциональной информации
- •Перцептивная гипотеза
- •Выявление перцептивной защиты
- •Выработка условных рефлексов на неосознаваемом уровне
- •Прайминг
- •Психофизиология восприятия эмоциональных слов
- •262 Психофизиология бессознательного
- •Глава 12 Психофизиология осознанных процессов
- •Зрительное осознание
- •Локализация сознания
- •Роль речи в осознании
- •Функциональная асимметрия и сознание
- •Сознание как информационный синтез
- •Иерархическая модель гештальта
- •Глава 13 Психофизиология эмоций
- •Врожденность эмоциональной экспрессии
- •Соответствие физиологических изменений психологическим переживаниям
- •Механизмы возникновения эмоций
- •Эмоции и функциональная асимметрия мозга
- •Информационная теория эмоций
- •Нейрональная основа эмоциональной коммуникации
- •Агрессия
- •Глава 14
- •Процесс мышления
- •Определение интеллекта
- •316 Проблемы оценки интеллекта
- •Психофизиологические корреляты мыслительного процесса
- •Анализ нейронной активности в процессе мышления
- •Ээг и томографические исследования мыслительной деятельности
- •Связанные с событием потенциалы
- •Факторы, определяющие развитие интеллекта
- •Креативность
- •Глава 15 Психофизиология памяти и научения
- •Энграмма и способы ее формирования
- •332 Нейронные механизмы рабочей (оперативной) памяти
- •Поиск структур, ответственных за долговременное хранение информации
- •Особенности формирования эксплицитной памяти
- •341 Психофизиологические механизмы имплицитной памяти
- •Классический условный рефлекс
- •Оперантное обусловливание
- •Влияние эмоциональной значимости информации на память
- •Глава 16 Речь
- •Эволюционный смысл появления речевого общения
- •Функциональная асимметрия и речь
- •Процесс произнесения слов
- •Значение слова с точки зрения психофизиологии
- •Роль лимбических структур в порождении речи
- •Глава 17
- •П. Рубенс. Адам и Ева
- •Психофизиология пола
- •Биологический смысл половых различий
- •Закономерности половой дифференцировки в онтогенезе
- •Механизмы детерминации пола в пренатальный период
- •385 Половая дифференцировка мозга
- •Половая дифференцировка после рождения
- •Репродуктивный цикл
- •Нервный контроль сексуального поведения
- •Особенности сексуального поведения животных
- •Особенности сексуального поведения человека
- •Феромоны и их влияние на сексуальное поведение
- •Воздействие половых гормонов у человека
- •Психофизиологические причины измененного сексуального поведения
- •Половые различия познавательных процессов
- •Половые различия в приспособлении к среде
- •Глава 18 Психофизиологические механизмы старения
- •Спутники старости
- •Возрастные изменения мозговой ткани
- •Возрастные изменения ненейрональной мозговой ткани
- •Старение днк
- •Когнитивные функции в возрасте инволюции
- •Болезнь Альцгеймера
- •418 Механизмы замедления старения
- •Глава 19 Психофизиологические механизмы аддиктивного поведения
- •Роль дофаминергических структур в механизме подкрепления
- •Функционирование системы подкрепления
- •Участие дофамина в пластических перестройках при инструментальном обусловливании
- •Наркотическая аддикция
- •Наркотики и дофаминергическая система
- •Алкогольная аддикция
- •Сексуальная аддикция
- •Любовная аддикция
- •Алиментарная аддикция
- •Зависимость от работы (работоголия)
- •Зависимость от игры (гэмблинг)
- •Кибераддикция
- •1Игростриарная система дофаминергических волокон
- •Глава 20 Паранатальная психофизиология
- •Особенности развития человека в раннем онтогенезе
- •Психофизиологические изменения во время беременности
- •Нервная
- •Пластинка
- •Слуховая плэкода.
- •Зачаток сердца
- •Влияние состояния матери на плод
- •Пренатальное развитие цнс
- •Перинатальный период
- •“Si-Психофизиологическая готовность к материнству
- •Морфофункциональные изменения в цнс в постнатальный период
- •473 Критические периоды постнатального развития
- •Физиологические обоснования наличия критических периодов
Механизмы детерминации пола в пренатальный период
Генетический пол. Различия в формировании мужского и женского организма обнаруживаются с первых недель его развития. Все клетки человека, за исключением половых, имеют 23 пары хромосом, из которых одна пара — половые. Половые клетки (гаметы) — яйцеклетки и сперматозоиды — образуются путем особого деления — мейоза, отличающегося от обычного деления — митоза — тем, что при этом вновь возникшие клетки получают одну (сромосому из каждой пары.
Генетический пол определяется отцовской половой клеткой (спермато-|зоидом) во время оплодотворения. Это связано с тем, что развитие женско-i пола у человека обусловлено наличием в зиготе (оплодотворенной яйцеклетке) двух половых хромосом X и X, а мужского — X и Y. Все яйцеклетки в результате мейоза имеют одинаковые хромосомы — X, тогда как спермато-
380
381
з
оиды
могут быть двух типов: сX-или
с Y-
хромосомами. В зависимости от того,
какой сперматозоид оплодотворит
яйцеклетку, зародыш будет
либо мужским, либо женским (рис.
17.1).
Частота появления мужских или женских зигот неодинакова, поскольку выживаемость сперматозоидов, несущих мужское или женское начало, различна и зависит от многих факторов, в том числе от кислотности среды влагалища. Все эти факторы являются сложной производной от физического и психического состояния женщины в момент оплодотворения.
Рис. 17.1. Генетическая детерминация пола.
Роль половых хромосом в детерминации пола. До 1969 г. число Х-хромо-сом считали важнейшим детерминантом пола у млекопитающих. Позднее исследователи сместили акцент на Y-хромосому, исходя из данных о наличии людей с особенными кариотипами (хромосомными наборами).
Так, встречаются индивиды с одной Х-хромосомой (синдром Тернера), которые выглядят как женщины, с одной Y-хромосомой и множественными Х-хромосомами (синдром Клейнфельтера), ведущие себя как мужчины, а также женщины с кариотипами XY. Есть мужчины с кариотипом XX, что обусловлено переносом нескольких участков короткого плеча Y-хромосомы на общий для обеих аутосом псевдоаутосомальный участок Х-хромосомы. Эти мужчины обладают нормальными яичками, но стерильны. Они встречаются с частотой приблизительно один на 20 000 человек (Смирнов, 1997).
В 60-х годах А. Жост на основе экспериментов по удалению гонадного валика (зачатка будущих гонад) у ранних эмбрионов кролика пришел к выводу: отсутствие гонадного валика при формировании гонады приводит к развитию всех эмбрионов как самок. Он высказал предположение, что сек-ретируемый гонадами самцов тестостерон ответственен за маскулинизацию плодов, и предсказал наличие еще одного вещества, элиминирующего зачатки женской половой системы в зародыше, позднее названного ан-тимюллеровским гормоном. На основе этих данных Жост сформулировал принцип: хромосомный пол, обусловленный наличием или отсутствием Y-хромосомы, определяет дифференциацию эмбриональной гонады в яички или яичник, которые контролируют фенотипический пол организма (Смирнов, 1997).
Характеристика Y-хромосомы. Она существенно отличается от других хромосом кариотипа тем, что обеднена генами и обогащена повторяющимися блоками нуклеотидов и сателлитной ДНК. Она невелика, тем не менее ко-
I пирующей способности ее ДНК достаточно для нескольких тысяч генов. Боль-1Ц1ИНСТВО Y-хромосомных последовательностей гомологичны ДНК Х-хромосо-,1 или аутосом, и лишь часть из них уникальна.
Y-хромосома единственная в геноме млекопитающих не работает непосредственно на реализацию фенотипа. Ее генетическая значимость связана с преемственностью между поколениями, в частности, с контролем гамето-I генеза, первичной детерминацией пола. Жесткий отбор действует только на (немногие ее гены, остальная ДНК более пластична.
Существует гипотеза, что первоначально Y-хромосома контролировала I гаметный пол — гаметогенез — и не была связана с первичным определением пола. Эта функция возникла только у позвоночных и особенно у млекопитающих, у которых и мужской, и женский зародыши развиваются в утробе матери в избытке женских половых гормонов, способных воздейство-I вать на будущий пол эмбриона. Y-хромосома в этом случае обеспечивает возможность выживания мужских зародышей, поскольку прогонады у последних успевают сделать свой выбор в пользу яичек с помощью специаль-1 ного генетического блокирующего механизма еще до воздействия женских I половых гормонов (Смирнов, 1997).
Диморфизм (внешние и внутренние различия в формировании мужского I и женского организма) контролируется не Y-хромосомой, а концентраци-| ей половых гормонов в критический период развития организма.

Первичная детерминация пола. Схема определения пола у млекопитающих может выглядеть так. На догонадной стадии у эмбриона отсутствуют половые органы. На прогонадной — выделяются гонадный валик и бисексуальные гонады, предшественники и мужских, и женских половых органов. Предшественником женских половых органов является Мюллеро-ва система, мужских — Вольфова система. Мюллерова система в дальнейшем дает начало фаллопиевым трубам, матке, влагалищу. Из Воль-фовой системы развиваются яички, придатки яичек, семявыносящий проток, предстательная железа (Carlson, 1992).
Рис. 17.2. Развитие внутренних половых ор-| ганов (Carlson, 1992).
Первичная закладка пола связана с программированием Y-хромосомой синтеза фактора, определяющего развитие яичек. Дифференциров-ка гонад у человеческого зародыша происходит приблизительно на шестой неделе развития, когда у XY-зародыша образуются яички, а у
382
383
\Рис
173. Развитие
внешних половых органов ((Carlson,
1992)

Синтез тестис-определяющего фактора связывают с активностью гена SRY (sex determinging region Ygene), открытого в 1976 г. (Berta e. а., 1992; Koopman e. а., 1992). Этот ген у человека имеет небольшой размер, не содержит интронов (вставок, непосредственно не определяющих структуру белка), кодирует белок размером в 204 аминокислотных остатка. Это лишь один ген из большого семейства (их около 20) (Смирнов, 1997).
Поскольку эмбрионы и гонады будущих самцов растут быстрее, чем самок, еще до развития гонадного бугорка можно предположить, что есть и другие факторы, предопределяющие дифференциацию прогонад по мужскому или женскому типу.
Был найден ген DAX1, кодирующий ядерный рецептор. При дупликации (удвоении) он может вызывать возвращение мужского пола к женскому. Он чувствителен к гормонам и при высокой их концентрации способен преодолеть сигнал SRY гена и сдвинуть развитие прогонад в направлении яичника. Этот ген рассматривается как реликт более примитивной Х-хромосом-ной системы детерминации пола.
Предполагается, что активность SRY гена является недостаточным усло вием появления семенников из потенциально бисексуальных гонад. Для появления клеток Сертоли, семявыносящих канальцев, клеток Лейдига и т. д. требуется его взаимодействие со многими аутосомальными и Х-хромосом- ными факторами. В эволюционном развитии все более усиливается взаимо связь гаметного и соматического полов. Направление дифференциации по ловых клеток на каждом этапе развития зависит не только от их собствен ной хромосомной конституции, но и от окружения, созданного соматичес кими клетками гонад. Детерминация пола в этом случае является сложным многокомпонентным процессом (Смирнов, 1997). ,
В отличие от Вольфовой системы Мюллерова не нуждается в гормональной стимуляции, поэтому при всех сбоях в последовательности активации генов, кодирующих факторы дифференцировки гонад, формируется женский зародыш. Мюллерова система имеет рецепторы к гормону, подавляющему ее собственное развитие, а Вольфова чувствительна только к андро-генам. Активность андрогенов продолжается приблизительно до 32-й недели, а затем клетки Лейдига претерпевают обратное развитие.
Формирование женских и мужских половых органов. Уже отмечалось, что синдром Тернера связан с наличием только одной Х-хромосомы (ХО) у человека, когда отсутствует и вторая Х-хромосома и Y-хромосома. У таких организмов нет ни мужских, ни женских гонад, но развиваются женские внутренние и наружные половые органы, поскольку для этого не нужны до-
384

полнительные факторы. Внутренние половые органы женщины формируются из Мюллеровой системы, а наружные — под воздействием гормонов, вырабатываемых фетальными (fetus — плод, лат.) женскими половыми органами. Развитие внешних половых органов мужчины Определяется активностью яичек и выработкой ими фетальных андрогенов (рис. 17.3). Факторы, участвующие в становлении внутренних и внешних половых органов, обозначены на рис. 17.4.
С активностью фетальных гормонов связана и дифференцировка определенных отделов мозга, регулирующих половые различия в поведении.
I Рис 17.4. Гормональный контроль маскулинизации и дефеминизации внутренних и внешних I половых органов (Carlson, 1992).
