Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UMKD_Enzimologia_Lektsii.doc
Скачиваний:
495
Добавлен:
10.06.2015
Размер:
11.89 Mб
Скачать

Физико-химические механизмы ферментативного катализа

Структурные особенности поверхностного слоя белковых глобул позволяют сосредоточить в активном центре большое число различных по химической природе функциональных групп, способных не только сорбировать молекулу субстрата, но также и взаимодействовать с ней химически. Среда активного центра обладает высокоразвитой микрогетерогенностью, где гидрофобные участки с исключительно низкой диэлектрической проницаемостью и полярностью (по сравнению с водой) чередуются с сильно гидратированными полярными областями с высоким электростатическим потенциалом и т. д.. Поверхностный слой характеризуется также и повышенной микровязкостью. Все эти эффекты способствуют в конечном итоге многоцентровому взаимодействию фермента (его активного центра) с молекулой субстрата (хелатные или клешневидные комплексы).

Наиболее существенными представляются три причины ускорений ферментативных реакций (по сравнению с гомогенно-каталитическими процессами):

1) сорбционные взаимодействия с белком боковых субстратных групп обеспечивают ускорение реакции порядка 107 раз и более;

2) полифункциональный катализ (типа общего кислотно-основного катализа) вполне может привести к ускорениям, превышающим величину 103;

3) весьма существенное влияние на ферментативную реакцию (изменение скоростей на несколько десятичных порядков) могут оказать также и эффекты микросреды активного центра.

В целом на основании этих физико-химических механизмов можно ожидать cуммарных эффектов ускорения более чем в 1010 раз. Как видно, это вполне покрывает тот масштаб ускорений, который отличает ферментативный катализ от механизмов гомогенно-каталитического типа.

Таким образом, успехи современной теории биологического катализа и теоретической химии показали, что ферментативные реакции при всей их сложности протекают в полном соответствии с общими закономерностями обычных химических превращений. Объяснение огромных преимуществ, которыми ферментативный катализ отличается от небиологического гетеро- и гомогенного катализа, заложено фактически лишь в исключительно сложной структуре макромолекул белка.

Лекция 3.2

Механизм действия гидролаз

на примере карбоксипептидазы А

Деление гидролаз на типы

по механизму действия и строению активного центра

Гидролазы – это третий класс ферментов. Сюда относятся многие ферменты, имеющие промышленное значение, и большинство пищеварительных ферментов. Общим свойством всех гидролаз является то, что они катализируют реакции гидролиза, то есть расщепление более сложных соединений на более простые с присоединением воды. К классу гидролаз относятся также протеолитические ферменты (подкласс 3.4), катализирующие гидролиз пептидов и белков и имеющие большое значение в теоретической энзимологии и в практике применения ферментных препаратов. Согласно современной номенклатуре и классификации ферментов, протеолитические ферменты принадлежат к подклассу пептидаз – гидролаз и по механизму действия делятся на 4 типа:

1. Аминопептидазы (3.4.1; α-аминоацилпептид – гидролазы). Отличительной чертой этих ферментов является то, что для их действия необходимо наличие в молекуле субстрата свободной α-аминной группы (например, лейцинаминопептидаза, аминотрипептидаза и др.);

2. Карбоксипептидазы (3.4.2; пептидил-аминокислотные гидролазы). Как показывает само название, для действия фермента необходимо наличие в молекуле субстрата свободной карбоксильной группы (например, карбоксипептидаз А, карбоксипептидаза В и др.);

3. Дипептидазы (3.4.3; дипептид – гидролазы). Согласно современным данным, существование дипептидаз, действующих на многие дипептиды, кажется весьма сомнительным. В то же время в различных объектах обнаружены дипептидазы с весьма высокой специфичностью. Таковы, например, глицилглицин-дипептидаза, иминодипептидаза, имидодипептидаза.

4. Протеиназы (3.4.4; пептидил-пептид – гидролазы). Сюда относятся ферменты, составляющие по классификации М. Бергманна группу эндопептидаз. Эндонептидазы, в отличие от экзопептидаз, способны гидролизовать не только концевые пептидные связи, но и связи, расположенные внутри белковых молекул. В эту группу входит ряд хорошо изученных ферментов, имеющих большое практическое значение (например, пепсин, трипсин идр.).

Многие протеолитические ферменты образуются в виде «зимогенов» – неактивных предшественников. Таковы пепсин, реннин, химотрипсин, трипсин, тромбин, карбоксипептидаза. За последние годы достигнуты большие успехи в изучении процесса активации – превращения предшественников (зимогенов) в активные ферменты. Установлено, что в основе процесса активации лежит так называемый ограниченный протеолиз (см. лекцию 4.1).

Синтез протеиназ в неактивной форме и ряда других неактивных белков-предшественников имеет, очевидно, определенный биологический смысл, предотвращая разрушение клеток органов, в которых образуются проферменты. Примерами подобного активирования белков является активирование некоторых гормонов (проинсулин → инсулин), белка соединительной ткани (растворимый проколлаген → в нерастворимый коллаген), белков свертывающей системы крови.

Большой интерес представляет строение активного центра протеолитических ферментов. В зависимости от строения активного центра протеолитические ферменты можно разделить на три группы. Первая группа включает ферменты, не требующие присутствия активаторов; сюда относятся трипсин, химотрипсин, пепсин. Вторая группа включает энзимы, которые требуют активации такими веществами, как цистеин, глютатион, аскорбиновая кислота, цианид; сюда относятся некоторые катепсины, папаин, фицин. Третью группу составляют энзимы – металлопротеины. Активность этихферментов сильно увеличивается в присутствии ионов металллов, таких, как Mn2+, Mg2+, Zn2+, Со2+ и др. Первая группа протеаз может быть разделена на две подгруппы. К первой подгруппе относятся ферменты, действующие в кислой зоне рН (пепсин, реннин) о строении их активных центров известно сравнительно немного. Есть данные, что для каталитического действия пепсина большое значение имеют остатки тирозина и аспарагиновой кислоты. Ко второй подгруппе относятся ферменты, имеющие оптимум рН в щелочной зоне и составляющие группу так называемых «сериновых» протеаз (трипсин, химотрипсин, тромбин, панкреатопептидаза Е, субтилопептидаза).