Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_1-74_Ekzamen_ekologia.docx
Скачиваний:
180
Добавлен:
09.06.2015
Размер:
1.39 Mб
Скачать

9.Основные принципы системологии: принцип множественности моделей,

Принцип множественности моделей В.В.Налимова (1971): для объяснения и предсказания структуры и (или) поведения сложной системы возможно построение нескольких моделей, имеющих одинаковое право на существование.

Принцип осуществимости Б.С.Флейшмана (1978, 1982): позволяет отличить модели сложных систем от обычных математических моделей. Математические модели требуют только указания необходимых и достаточных условий существования решения (логическая непротиворечивость: что есть на самом деле?). Модели конструктивной математики дополнительно к этому требуют указания алгоритма нахождения этого решения (например, путем полного перебора всех возможных ситуаций; как надо это сделать?). Системология рассматривает только те модели, для которых этот алгоритм осуществим, т.е. решение может быть найдено с заданной вероятностью р0 за время t096 (р0,t0-осуществимость; преодоление сложности или ответ на вопрос: что мы можем сделать?). Иными словами, принцип осуществимости может быть сформулирован следующим образом: мы не надеемся на везение и у нас мало времени.

Принцип формирования законов: постулируются осуществимые модели, а из них в виде теорем выводятся законы сложных систем. При этом законы касаются имеющих место или будущих естественных и искусственных систем. Они могут объяснить структуру и поведение первых и индуцировать построение вторых. Таким образом, законы системологии носят дедуктивный характер и никакие реальные явления не могут опровергнуть или подтвердить их справедливость. Последнее утверждение следует понимать так (Флейшман, 1982, с. 21): несоответствие между экспериментом над реальной сложной системой и законом может свидетельствовать лишь о несоответствии реальной системы тому классу осуществимых моделей, для которых выведен закон; с другой стороны, соответствие эксперимента закону никак не связано с его подтверждением (он в этом не нуждается, будучи дедуктивным) и позволяет "оставаться" исследователю в рамках принятых при выводе закона допущений и гипотез.

Принцип рекуррентного объяснения: свойства систем данного уровня иерархической организации мира выводятся в виде теорем (объясняются), исходя из постулируемых свойств элементов этой системы (т.е. систем непосредственно нижестоящего уровня иерархии) и связей между ними. Например, для вывода свойств экосистемы (биоценоза) постулируются свойства и связи популяций, для вывода свойств популяций - свойства и связи особей и т.д.

10. Методы научного исследования в экологии(наблюдения, эксперимент, моделирование)

Научным наблюдением (Н.) называют восприятие предметов и явлений действительности, осуществляемое с целью их познания. В акте Н. можно выделить:

1) объект;

2) субъект;

3) средства;

4) условия;

5) систему знания, исходя из которой задают цель Н. и интерпретируют его результаты

Эксперимент (Э.) есть непосредственное материальное воздействие на реальный объект или окружающие его условия, производимое с целью познания этого объекта.

В Э. обычно выделяют следующие элементы:

1) цель;

2) объект экспериментирования;

3) условия, в которых находится или в которые помещается объект;

4) средства Э.;

5) материальное воздействие на объект.

Модели́рование — исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.

11.Полевые наблюдения. Программа полевых исследований в экологии.

Полевые экологические исследования обычно подразделяются на маршрутные, стационарные, описательные и экспериментальные.

Маршрутные методы используются для выяснения присутствия тех или иных жизненных форм организмов, экологических групп, фитоценозов и т. п., их разнообразия и встречаемости на исследуемой территории. Основными приемами являются: прямое наблюдение, оценки состояния, измерение, описание, составление схем и карт.

К стационарным методам относятся приемы длительного (сезонного, круглогодичного или многолетнего) наблюдения за одними и теми же объектами, требующие неоднократных описаний, замеров, измерений наблюдаемых объектов. Стационарные методы включают полевые и лабораторные методики. Характерным примером стационарного метода является мониторинг (наблюдение, оценка, прогноз) состояния окружающей среды.

Описательные методы являются одними из основных в экологическом мониторинге. Прямое, непосредственное наблюдение за изучаемыми объектами, фиксирование динамики их состояния во времени и оценка регистрируемых изменений позволяют прогнозировать возможные процессы в природной среде.

Экспериментальные методы объединяют различные приемы прямого вмешательства в обычное, естественное состояние исследуемых объектов. Производимые в эксперименте наблюдения, описания и измерения свойств объекта обязательно сопоставляются с его же свойствами в условиях, не задействованных в эксперименте (фоновый эксперимент).

Для современных экологических исследований характерно то, что они основываются на количественной оценке изучаемых объектов и явлений.

Например, при изучении растительных сообществ проводятся описания пробных площадей и учетных площадок, оценка хозяйственной роли сообществ, оценка площади выявления (т. е. минимальной площади, на которой выявляются все наиболее существенные особенности изучаемого сообщества), геоботаническое картирование и т. д. При экологическом изучении животных анализируются закономерности миграций и размещения популяций, а также многие другие показатели: частота встречаемости, обилие, доминирование, биомасса, продукция, удельная продукция.

12.Эксперимент в экологии. Существенные компоненты и ключевые особенности проектирования.

Анатолий

12) Экология имеет свою специфику – объектом ее исследования служат не единичные особи, а группы особей, популяции и их сообщества, то есть биологические макросистемы. Многообразие связей, формирующихся на уровне биологических макросистем, обуславливает разнообразие методов экологических исследований.

наблюдения не могут дать вполне точного ответа, например, на вопрос, какой же из факторов среды определяет характер жизнедеятельности особи, вида, популяции или сообщества. На этот вопрос можно ответить только с помощью эксперимента, задачей которого является выяснение причин наблюдаемых в природе отношений. В связи с этим, экологический эксперимент, как правило, носит аналитический характер. Экспериментальные методы позволяют проанализировать влияние на развитие организма отдельных факторов в искусственно созданных условиях и, таким образом, изучить все разнообразие экологических механизмов, обуславливающих его нормальную жизнедеятельность.

На основе результатов аналитического эксперимента можно организовать новые полевые наблюдения или лабораторные эксперименты. Выводы, полученные в лабораторном эксперименте, требуют обязательной проверки в природе. Это дает возможность глубже понять естественные экологические отношения популяций и сообществ.

Эксперимент в природе отличается от наблюдения тем, что организмы искусственно ставятся в заданные условия, при которых можно строго дозировать тот или иной фактор и точнее, чем при наблюдении, оценить его влияние.

Эксперимент может носить и самостоятельный характер. Например, результаты изучения экологических связей насекомых дают возможность установить факторы, влияющие на скорость развития, плодовитость, выживаемость ряда вредителей (температура, влажность, пища). В экологическом эксперименте трудно воспроизвести весь комплекс природных условий, но изучить влияние отдельных факторов на вид, популяцию или сообщество вполне возможно.

Примером экологических экспериментов широких масштабов могут служить исследования, проводимые при создании лесозащитных полос, при мелиоративных и различных сельскохозяйственных работах. Знание при этом конкретных экологических особенностей многих растений, животных и микроорганизмов позволяют управлять деятельностью тех или иных вредных или полезных организмов.

Эксперимент требует активного вмешательства исследователя для получения информации. Это может послужить созданию спец условий для проведения эксперемента.

Ключевые особенности экспериментирования в экологии

1)Сначала необходимо определить – чем манипулировать и что определить. Манипуляции должны быть реальными и действие на организм должно учитываться

2)Правильно поставленный эксперимент требует контроля и повторения.

3)Контроль определяет , есть ли ответы на манипуляции и зависят ли они от экспериментатора

4)Эксперименты в экологии необходимо проводить длительное время и при этом отслеживать характер и типы прямого воздействия

5)Прежде чем поставить эксперимент нужно хорошо выучить объект манипуляции

6) Иметь терпение , делать исследование точно, обращая особое внимание на действующие методики, не смотря на долготу проведения эксперимента

13. Математическое моделирование в экологии.

Суть метода заключается в том, что с помощью математических символов строится абстрактное упрощенное подобие изучаемой системы. Затем, меняя значение отдельных параметров, исследуют, как поведет себя данная искусственная система, т. е. как изменится конечный результат.

Модели строят на основании сведений, накопленных в полевых наблюдениях и экспериментах. Чтобы построить математическую модель, которая была бы адекватной, т. е. правильно отражала реальные процессы, требуются существенные эмпирические знания. Отразить все бесконечное множество связей популяции или биоценоза в единой математической схеме нереально. Однако, руководствуясь пониманием, что в надорганизменных системах имеется внутренняя структура и, следовательно, действует принцип «не все связи существенны», можно выделить главные связи и получить более или менее верное приближение к действительности.

В построении математических моделей сложных процессов выделяются следующие этапы.

1. Прежде всего, те реальные явления, которые хотят смоделировать, должны быть тщательно изучены: выявлены главные компоненты и установлены законы, определяющие характер взаимодействия между ними. Если неясно, как связаны между собой реальные объекты, построение адекватной модели невозможно. На этом этапе должны быть сформулированы те вопросы, ответ на которые должна дать модель. Прежде чем строить математическую модель природного явления, надо иметь гипотезу о его течении.

2. Разрабатывается математическая теория, описывающая изучаемые процессы с необходимой детальностью. На ее основе строится модель в виде системы абстрактных взаимодействий. Установленные законы должны быть облечены в точную математическую форму. Конкретные модели могут быть представлены в аналитической форме (системой аналитических уравнений) или в виде логической схемы машинной программы. Модель природного явления есть строгое математическое выражение сформулированной гипотезы.

3. Проверка модели – расчет на основе модели и сличение результатов с действительностью. При этом проверяется правильность сформулированной гипотезы. При значительном расхождении сведений модель отвергают или совершенствуют. При согласованности результатов модели используют для прогноза, вводя в них различные исходные параметры.

Схема отношения паразит – хозяин.

где N1 – численность популяции хозяина; N2 – численность популяции паразита; r1 – удельная скорость увеличения популяции хозяина; d2 – удельная скорость гибели популяции паразита; p1 и р2 – константы. График процесса паразитической инвазии, построенный по таким уравнениям, обнаруживает, что в результате взаимодействия двух видов должны возникать осцилляции (колебания) с постоянной амплитудой, которая зависит от соотношения между скоростями увеличения численности двух видов.

14-15.Основные теоретические понятия в рамках концепций современной экологии.

Аксио́ма (др.-греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое в основе доказательства других ее положений.

Гипо́теза (др.-греч. ὑπόθεσις — предположение; от ὑπό — снизу, под + θέσις — тезис) — предположение или догадка; утверждение, предполагающее доказательство, в отличие от аксиом, постулатов, не требующих доказательств.

Закон — фактологически доказанное утверждение (в рамках теории, концепции, гипотезы), объясняющее объективные факты; либо некое явление, обладающее общностью и повторяемостью, зафиксированное и описанное.

Конце́пция (от лат. conceptio — понимание, система) — определённый способ понимания, трактовки каких-либо явлений, основная точка зрения, руководящая идея для их освещения[1]; система взглядов на явления в мире, в природе, в обществе[2]; ведущий замысел, конструктивный принцип в научной, художественной, технической, политической и других видах деятельности; комплекс взглядов, связанных между собой и вытекающих один из другого, система путей решения выбранной задачи. Концепция определяет стратегию действий.

Моде́ль (фр. modèle, от лат. modulus — «мера, аналог, образец») — это система, исследование которой служит средством для получения информации о другой системе[1], это упрощённое представление реального устройства и/или протекающих в нём процессов, явлений.

Прави́ло — описывает действие в рамках соблюдения принципов.

Принцип или начало (лат. principium, греч. αρχή) — 1. Основополагающая истина, закон, положение или движущая сила, лежащая (лежащий) в основе других истин, законов, положений или движущих сил. 2. Руководящее положение, основное правило, установка для какой-либо деятельности.

Теоре́ма (др.-греч. θεώρημα — «доказательство, вид; взгляд; представление, положение») — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод).

Уравнение – это равенство, которое выполняется лишь при некоторых значениях

16.Экологические факторы. Классификация экологических факторов.

Факторы среды воздействуют на организм не по отдельности, а в комплексе, соответственно, любая реакция организма является многофакторно обусловленной. При этом интегральное влияние факторов не равно сумме влияний отдельных факторов, так как между ними происходят различного рода взаимодействия, которые можно подразделить на четыре основных типа:

  1. Монодоминантность — один из факторов подавляет действие остальных и его величина имеет определяющее значение для организма.

  2. Синергизм — взаимное усиление нескольких факторов, обусловленное положительной обратной связью.

  3. Антагонизм — взаимное гашение нескольких факторов, обусловленное обратной отрицательной связью.

  4. Провокационность — сочетание положительных и отрицательных для организма воздействий, при этом влияние вторых усилено влиянием первых.

Влияние факторов также зависит от природы и текущего состояния организма, поэтому они оказывают неодинаковое воздействие как на разные виды, так и на один организм на разных этапах онтогенеза: низкая влажность губительна для гидрофитов, но безвредна для ксерофитов; низкие температуры без вреда переносятся взрослыми хвойными умеренного пояса, но опасны для молодых растений.

Классификации экологических факторов:

По характеру воздействия

  1. Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ

  2. Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

По происхождению:

1. Абиотические — факторы неживой природы:

климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

2. Биотические — связанные с деятельностью живых организмов:

фитогенные — влияние растений

микогенные — влияние грибов

зоогенные — влияние животных

микробиогенные — влияние микроорганизмов

3. Антропогенные (антропические):

физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

социальные — связанные с отношениями людей и жизнью в обществе

По расходованию:

  1. Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде

  2. Условия — не расходуемые организмом элементы среды

По направленности:

  1. Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы

  2. Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

  3. Осцилляторные (импульсные, флуктуационные) — колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

17.Гипотеза компенсации экологических факторов и незаменимости фундаментальных факторов.

Отсутствие или недостаток некоторых экологических факторов может быть компенсирован каким-либо другим близким (аналогичным) фактором. Организмы не являются «рабами» физических факторов (условий среды): они сами и приспосабливаются, и изменяют условия среды так, чтобы ослабить лимитирующее влияние тех или иных факторов.

Некоторые моллюски (в частности, Mytilus galloprovincialis Lam.) при отсутствии (или дефиците) кальция могут строить свои раковины, частично заменяя кальций стронцием (при достаточном содержании всреде последнего).

Полное отсутствие в среде фундаментальных экологических факторов (физиологически необходимых;например, света, воды, углекислого газа, питательных веществ) не может быть компенсировано (заменено) другими факторами.

18.Принцип лимитирующих факторов.

Принцип лимитирующего фактора – избыток или недостаток одного абиотического фактора может повлечь за собой ограничение или остановку роста численности популяции в экосистеме, даже если значения других факторов оптимальны.

Лимитирующий фактор – любой фактор, тормозящий рост популяции в экосистеме.

Лимитирующие факторы для наземных экосистем:

- температура;

- вода;

- свет;

- питательные вещества в почве.

Лимитирующие факторы для водных экосистем:

- температура;

- солнечный свет;

- содержание растворенного кислорода;

- соленость.

19.Влияние экологических факторов на организм. Закон минимума Ю.Либиха

Закон, открытый Ю.Либихом ( 1840 ), согласно которому относительное действие отдельного экологического фактора тем сильнее, чем больше он находится по сравнению с другими факторами в минимуме ; по данному закону, от вещества, концентрация которого лежит в минимуме, зависят рост растений, величина и устойчивость их урожайности. Закон минимума Либиха гласит : рост растения зависит от того элемента питания, который присутствует в минимальном количестве. В изобилии присутствуют двуокись углерода и вода, а потому они не являются факторами, ограничивающими рост. А вот цинка в почве очень мало, потребность растения в нем невелика, и рост растения будет успешен до тех пор, пока не будет израсходован весь его запас. Поэтому наличие цинка является ограничивающим, или лимитирующим фактором.

Ю.Одум :

  • организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого;

  • в организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

  • диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма;

  • многие факторы среды становятся ограничивающими (лимитирующими) в особо важные (критические) периоды жизни организмов, особенно в период размножения.

  • оптимальные значения экологических факторов для организмов в природе и в лабораторных условиях (в силу существенной их изоляции), зачастую, оказываются различными (гипотеза компенсации экологических факторов); что тесно связано с различением фундаментальной и реализованной экологической ниши;

Совокупность факторов воздействует сильнее всего на те фазы развития организмов, которые имеют наименьшую пластичность - минимальную способность к приспособлению.

Толерантность (от греческого толеранция - терпение) - способность организмов выдерживать изменения условий жизни (колебания температуры, влажности, света).

Диапазон толерантности.

Чтобы выразить относительную степень толерантности, в экологии используют приставки стено- (от греч. stenos -узкий, тесный) и эври- (от греч. eurys - широкий), поли- (от греч. polys - многий, многочисленный) и олиго- (от греч. oligos - немногий, незначительный). Так (см. схему; Одум,1975) если в качестве фактора взять, например, температуру, то вид I - стенотермный и олиготермный, вид II - эвритермный, вид III - стенотермный и политермный:

Организмы с широким диапазоном толерантности обозначают приставкой "Эври". Эврибионт - организм, способный жить при различных условиях среды. Например: эвритермный - переносящий широкие колебания температуры.

С узким диапазоном - обозначают приставкой "Стено". Стенобионт - организм, требующий строго определённых условий среды. Например: форель - стенотермный вид, а окунь - эвритермный. Форель не выносит большие колебания температуры, если исчезнут все деревья по берегам горного потока, это приведет к повышению температуры на несколько градусов, в результате чего форель погибнет, а окунь выживет.