
- •Оглавление
- •Часть I. Общие вопросы лучевой диагностики.
- •1. Рентгенодиагностика.
- •1.6. Основы скиалогии (тенеобразования).
- •1.8. Описание (интерпретация) рентгенограмм
- •2. Радионуклидная диагностика (рнд).
- •2.2. Методы радионуклидной диагностики.
- •3. Ультразвуковая диагностика (узд).
- •3.3. Основные методы узд.
- •3.4. Основы ультразвуковой семиотики.
- •4. Рентгеновская компьютерная томография (кт).
- •4.2 Технология визуализации при кт.
- •4.3. Достоинства кт.
- •4.4. Виды кт.
- •5. Магнито-резонансная томография (мрт)
- •5.1 Принцип мрт.
- •5.2. Технология визуализации при мрт.
- •5.3. Достоинства и недостатки мрт.
- •6. Тест-вопросы.
- •7. Литература.
- •Глава 2.
- •2. Молекулярный этап бдии.
- •3. Клеточный этап бдии.
- •4. Соматический этап бдии.
- •5. Лучевые реакции организма.
- •3.5. Биологическое действие ультразвуковых волн.
- •6. Тест-вопросы.
- •Глава 3.
- •2. Обеспечение радиационной безопасности пациентов.
- •3. Обеспечение радиационной безопасности персонала.
- •1.2. Методы дозиметрии.
- •2. Обеспечение радиационной безопасности пациентов.
- •3. Обеспечение радиационной безопасности персонала.
- •4. Тест-вопросы.
- •Часть 2. Частная лучевая диагностика
- •1.2. Мультиспиральная компьютерная томография.
- •1.3. Методы узд.
- •1.4. Радионуклидные методы.
- •3. Рентгеноанатомия костей и суставов.
- •4. Рентгеновская семиотика травматических повреждений костей и суставов.
- •5. Рентгеновская семиотика заболеваний костей и суставов.
- •7. Алгоритмы лучевого обследования при патологии ксс.
- •8. Ситуационные задачи.
- •9. Тест-вопросы
- •Глава 2.
- •1.2. Компьютерно-томографические методы.
- •1.3. Методы узд
- •1.4. Радионуклидные методы.
- •3. Рентгеноанатомия легких.
- •4. Рентгенологические симптомы при заболеваниях лёгких и средостения.
- •7. Алгоритмы лучевого обследования при патологии органов дыхания и средостения.
- •8. Ситуационные задачи.
- •9. Тест-вопросы.
- •Глава 3.
- •1.2. Мультиспиральная компьютерная томография (мскт).
- •1.4. Ультразвуковые методы.
- •1.5. Радионуклидные методы.
- •2. Рентгеноанатомия сердца в прямой проекции.
- •3. Рентгенологические признаки увеличения камер сердца.
- •4. Рентгенологические синдромы при заболеваниях сердца.
- •5. Ультразвуковые синдромы при заболеваниях сердца и сосудов.
- •7. Алгоритмы лучевого обследования при патологии сердца.
- •7. Ситуационные задачи.
- •8. Тест-вопросы.
- •Глава 4.
- •1.4. Радионуклидные методы.
- •2. Лучевые методы исследования печени, жёлчных путей и поджелудочной железы.
- •2.1. Рентгенологические методы.
- •2.2. Методы компьютерной томографии.
- •2.3. Методы узи.
- •2.4. Радионуклидные метиоды.
- •3. Рентгеноанатомия пищевода, желудка и кишечника.
- •4. Порядок описания снимка полого органа пищеварительной системы.
- •5. Рентгенологические синдромы при заболеваниях пищевода, желудка и кишечника.
- •7. Алгоритмы лучевого обследования при заболеваниях органов пищеварительной системы.
- •8. Ситуационные задачи.
- •9. Тест-вопросы.
- •Глава 5. Радиология мочевыделительной системы.
- •1.4. Радионуклидные методы исследования мвс.
- •2. Рентгеноанатомия почек, мочеточников и мочевого пузыря.
- •3. Рентгенодиагностика мочекаменной болезни и опухолей почек.
- •5. Алгоритмы лучевого исследования.
- •6. Ситуационные задачи.
- •7. Тест-вопросы.
- •Глава 6. Радиология зубочелюстной системы.
- •1.2. Экстраоральные методы лучевого исследования.
- •1.3. Специальные методы лучевого исследования.
- •2. Рентгеноанатомия зубов и челюстей.
- •В формировании зубочелюстной системы выделяют несколько этапов.
- •3. Порядок описания снимков зубов и челюстей.
- •4. Рентгенодиагностика аномалий и пороков развития
- •5. Рентгенодиагностика травматических повреждений зубов и челюстей.
- •6. Рентгенодиагностика заболеваний зубов и челюстей.
- •7.Рентгенодиагностика новообразований челюстей.
- •7. Алгоритмы лучевого исследования при патологии зчс.
- •8. Ситуационные задачи.
- •Глава 7. Радиология эндокринной системы
- •1. Лучевые методы исследования эндокринной системы.
- •1.1. Рентгенологические методы.
- •1.2. Методы узд.
- •1.3. Радионуклидная диагностика.
- •2. Рентгеноанатомия эндокринных желёз.
- •Глава 8. Радиология нервной системы
- •Глава 2. Лучевая терапия неопухолевых заболеваний
3. Ультразвуковая диагностика (узд).
3.1. Принцип УЗД. Ультразвуковая диагностика – метод визуализации органов и тканей с помощью ультразвуковых волн. В силу своей простоты, безвредности и эффективности широко применяется в медицине – особенно на ранних стадиях диагностического процесса.
3.2. Физика ультразвука. Звук - это механическая продольная волна, распространяющаяся в упругих средах (твердых, жидких, газообразных), в которой колебания частиц находятся в той же плоскости, что и направление распространения энергии. Звуковые колебания с частотой свыше 20 000 в секунду (20 КГц) называются ультразвуком. С диагностической целью применяют ультразвук с частотой от 2 до 20 МГц. В отличие от электромагнитных волн (к которым относится и рентгеновское излучение), для распространения звука необходима среда, т.е. волна переносит энергию, но не материю, в вакууме ультразвук не распространяется. Энергия диагностического ультразвука не превышает 0,05 Вт/см2, он практически не вызывает биологических эффектов. Высокочастотный диагностический ультразвуковой сигнал гасится воздухом, поэтому зона исследования покрывается гелем, что создает полноценную среду для передачи сигнала с датчика в ткани.
Принципы построения ультразвукового изображения. Ультразвук вырабатывается пьезокристаллом (в современных аппаратах их несколько), размещенным в датчике УЗ-сканера. Ультразвуковые волны в виде узкого пучка направляются в исследуемую часть тела и претерпевают изменения – ослабляются, поглощаются, преломляются, отражаются, интерферируют и т.д. Измененная ультразвуковая волна отражается от границы двух разных по плотности сред и возвращается к датчику.
Отраженные эхо-сигналы принимаются тем же пьезокристаллом датчика и после компьютерной обработки преобразуются в ультразвуковое изображение. При этом учитывается время возвращения сигнала и его интенсивность. Скорость распространения ультразвуковой волны разная в различных тканях – минимальная в воздухе – 348 м/с, максимальная в костной ткани – 4050 м/с, но при обработке поступившего сигнала используется усредненная скорость волны – 1540 м/с. Использование указанной величины позволяет осуществить калибровку диагностических приборов при измерениях. Разные ткани по-разному проводят ультразвук, а, значит, отраженные сигналы имеют различную интенсивность, их пространственное расположение геометрически подобно анатомическим структурам. Особенностью УЗИ является изображение среза органа, а не его проекции на плоскость, характерной для рентгеновского исследования. Соответственно, если ультразвуковой луч проходит через исследуемый орган мимо патологического очага, то на экране монитора изображения этого очага не получится. И наоборот, если патологический очаг, находясь вне органа, проецируется на него, то и на полученной эхограмма этот очаг будет выглядеть как бы «в органе».
Для улучшения качества изображения в ультразвуковой диагностике используют так называемые акустические окна – ткани и структуры, расположенные между ультразвуковым датчиком исследуемым объектом. Они должны соответствовать ряду требований:
- высокая звукопроводимость; оптимальное вещество для акустического окна – гомогенная жидкость, классический пример акустического окна – осмотр органов малого таза через наполненный мочевой пузырь;
- ткани не должны значительно рассеивать ультразвук;
- малое расстояние между датчиком и исследуемым объектом (кроме всего прочего, это позволяет использовать высокочастотные датчики с большей разрешающей способностью);
- ширина акустического окна должна быть больше исследуемого объекта или хотя бы сопоставима с ней.
Хорошими акустическими окнами могут быть печень или мышцы. В противном случае акустическое окно можно создать – наполнить, например, желудок жидкостью для осмотра поджелудочной железы или сместить датчиком петли кишечника для этих же целей.