Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovaya_shpora.doc
Скачиваний:
67
Добавлен:
31.05.2015
Размер:
1.29 Mб
Скачать

Динамика материальной точки

Основная задача динамикисостоит в том, чтобы по заданным силам определить траекторию и закон движения данной материальной точки. Эта задача решается с помощью второго закона Ньютона. Поэтому второй закон Ньютона называют основным законом динамики материальной точки. Зная начальные условия ( положение и скорость точки в начальный момент) и закон действующих сил, можно однозначно предсказать положение и скорость материальной точки в любой последующий момент времени.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её (его) изменить это состояние.

Инерциальной системой отсчётаявляется такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).Таким образом, первый закон Ньютона утверждает существование инерциальных систем отсчёта. Первый закон Ньютона выполняется не во всякой системе отсчёта, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчёта.

Принцип относительностиГалилея: Всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчёта.

Принцип относительности Галилея означает, что законы механики одинаковы во всех инерциальных системах отсчёта. А именно, математическая форма второго и третьего законов Ньютона не меняется при переходе от одной инерциальной системы отсчёта к другой.

Масса- физическая величина, являющаяся мерой инерционных( инертная масса ) и гравитационных ( гравитационная масса ) свойств тела называется инертной массой этого тела. В этом смысле масса выступает как свойство тел не поддаваться изменению скорости как по величине, так и по направлению.Инертная и гравитационная массы равны друг другу.

Сила- векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры (деформируется). В каждый момент времени сила характеризуется величиной, направлением в пространстве и точкой приложения. Для того чтобы одно тело могло действовать на другое при непосредственном соприкосновении, первое должно быть в особом состоянии. На пример, чтобы действовать на пробку игрушечного пистолета, воздух или пружина должны быть сжаты, и т.д. Любое изменение формы или объема.

Сила характеризуется числовым значением,  направлением  в  пространстве и точкой приложения. Единица силы — ньютон. 1 Н = кг 5. 0м/с 52 0.

 Импульс тела р– физическая величина, равная произведению массы тела на его скорость: p=mV

Импульс силы– физическая величина, равная произведению силы на промежуток времени, в течении которого эта сила действует, FΔt.

Импульс  материальной точки— векторная величина,  численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости.

Второй закон Ньютона. Ньютон определил количество движения - понятие, введенное ещё Декартом и именуемое в настоящее время импульсом. Импульс (мера механического движения) – это произведение массы тела на его скорость:

Второй закон Ньютона описывает движение тела, учитывая его взаимодействие с другими телами. Он гласит: скорость изменения импульса тела равна действующей на него силе. Это уравнение называют основное уравнение динамики материальной точки. Если на тело действует несколько сил, то под силой F понимают равнодействующую.

Второй закон Ньютона можно записать иначе:

Третий закон Ньютона: Два тела, взаимодействующие между собой, всегда действуют друг на друга с силами, векторы которых равны по модулю, противоположны по направлению и лежат на одной прямой.

Инвариантность уравнений движенияотносительно преобразований Галилея представляет собой математическую формулировку принципа относительности классической механики: законы движения одинаковы во всех системах координат, равномерно движущихся относительно друг друга. Первый постулат теории относительности согласуется с этим принципом и обобщает его на законы распространения света. Однако одновременное применение обоих постулатов находится в противоречии с преобразованиями Галилея.

Силой тренияназывают силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

Различают трение внешнее и внутреннее.

Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

Различают сухое и жидкое (или вязкое) трение.

Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

Упругие силы. Любое изменение формы и размеров тела под действием приложенных внешних сил называется деформацией. Деформации делятся на упругие и неупругие, или пластические. Деформация называется упругой, если после прекращения действия внешней силы тело полностью восстанавливает первоначальные размеры и форму. Деформация называется неупругой (пластической), если после прекращения действия внешней силы тело не восстанавливает первоначальную форму и размеры. В природе нет абсолютно упругих или абсолютно неупругих тел. При сравнительно небольших деформациях многие твердые тела (прежде всего металлические) ведут себя, как тела упругие. При больших внешних воздействиях в телах возникают заметные пластические деформации.

Одна из фундаментальных сил, сила гравитации, проявляется на Земле в виде силы тяжести – силы, с которой все тела притягиваются к Земле.        Вблизи поверхности Земли все тела падают с одинаковым ускорением – ускорением свободного падения  g.       Отсюда вытекает, что в системе отсчета, связанной с Землей, на всякое тело действует сила тяжести mg. Она приблизительно равна силе гравитационного притяжения к Земле (различие между силой тяжести и гравитационной силой обусловлено тем, что система отсчета, связанная с Землей, не вполне инерциальная).По третьему закону Ньютона тело действует на подвес или опору с силой  , которая называется весом тела. Итак, вес тела – это сила, с которой тело в состоянии покоя действует на подвес или опору, вследствие гравитационного притяжения к Земле. Поскольку силы    и    уравновешивают друг друга, то выполняется соотношение

Согласно третьему закону Ньютона(4.2.1)

 

то есть вес и сила тяжести равны друг другу, но приложены к разным точкам: вес к подвесу или опоре, сила тяжести – к самому телу. Это равенство справедливо, если подвес (опора) и тело покоятся относительно Земли (или двигаются равномерно, прямолинейно). Если имеет место движение с ускорением, то справедливо соотношение

 

(4.2.2)

 

       Вес тела может быть больше или меньше силы тяжести: если  g  и  a  направлены в одну сторону (тело движется вниз или падает), то  G < mg, и если наоборот, то  G < mg. Если же тело движется с ускорением  a = g, то  G = 0 – т.е. наступает состояние невесомости.

Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции инпри этом должны быть такими, чтобы вместе с силами, обусловленными воздействием тел друг на друга, они сообщали телу ускорение, каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как (– ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерцииинпри этом должны быть такими, чтобы вместе с силами, обусловленными воздействием тел друг на друга, они сообщали телу ускорение, каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как (– ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

н= F+Fu– это уравнение движения (второй закон Ньютона) относительно неинерциальной системы отсчета.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]