
- •1.Множества. Функции. Логическая символика.
- •2.Сложная функция. Обратная функция. Основные элементарные функции.
- •Гиперболические функции:
- •3. Предел числовой последовательности.
- •4. Предел функции. Односторонние пределы.
- •5. Непрерывность функции. Классификации точек разрыва. Теорема о непрерывных на отрезке функциях.
- •Классификация точек разрыва.
- •6. Бесконечно малые функции и их свойства.
- •7. Бесконечно большие функции и их свойства.
- •8. Свойства пределов функции.
- •9. Первый замечательный предел.
- •10.Второй замечательный предел.
- •11. Сравнения бесконечно малых функций, основные эквивалентности.
- •12. Определение производной. Механический и геометрический смысл производной.
- •13. Основные свойства производных.
- •14. Производная сложной функции. Теорема о связи непрерывности и дифференцируемости функции.
- •1)Теорема:
- •2) Теорема:
- •15. Производная обратной функции. Производная показательно-степенной функции.
- •16. Производные основных функций: sin(X), cos(X), tg(X), ctg(X), lg(X), arcsin(X), arcos(X), arctg(X), arcctg(X), ax, xn и гиперболических функций.
- •17. Производная функции заданной параметрически.
- •18. Дифференциал функции, его геометрический смысл. Свойства дифференциала.
- •19.Производные и дифференциалы высших порядков. Производные высших порядков от функции заданной параметриески.
- •20. Уравнения касательной и нормали к кривой.
16. Производные основных функций: sin(X), cos(X), tg(X), ctg(X), lg(X), arcsin(X), arcos(X), arctg(X), arcctg(X), ax, xn и гиперболических функций.
ln’
x=1/x
(ax)’= (ax)*ln a.
Производные гиперболических функций:
17. Производная функции заданной параметрически.
Пустьx=x(t),
y=y(t),
тогда какому-то x,
будет соответствовать какое-то значение
t
(t=f(x)),
поэтому t
будет соответствовать y
и можно говорить, что y
является функцией x
(y=(x)),
можно говорить, что y’x.
Заданная функция называется
параметрически заданной функцией.
Теорема: Пусть y(x) задана параметрически уравнением (выше) предположим, что эти функции дифференцируемы и функция x=x(t) имеет обратную функцию t=f(x), тогда y’x, будет y’x=(y’(t))/(x’(t)). Из системы следует, что y=y(f(x)), y’x= y’(t)*f’(x) (По теореме производных обратной функции).
18. Дифференциал функции, его геометрический смысл. Свойства дифференциала.
Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение y ее представимо в виде
y = f'(x) x + ( x) x,
где первое слагаемое линейно относительно x, а второе является в точке x = 0 бесконечно малой функцией более высокого порядка, чем x. Если f'(x) 0, то первое слагаемое представляет собой главную часть приращения y. Эта главная часть приращения является линейной функцией аргумента x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю.
Определение: Дифференциалом функции y = f(x) называется главная линейная относительно x часть приращения y, равная произведению производной на приращение независимой переменной dy = f'(x) x (4). Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = x. Поэтому формулу для дифференциала принято записывать в следующем виде: dy = f'(x)dx. Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол с положительным направлением оси OX, то есть f'(x) = tg . Из прямоугольного треугольника MKN KN = MNtg xtg = f'(x) x, то есть dy = KN. Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение x. Отметим основные свойства дифференциала, которые аналогичны свойствам производной. d c = 0; d(c u(x)) = c d u(x); d(u(x) v(x)) = d u(x) d v(x); d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x); d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x). Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = (x), то есть рассмотрим сложную функцию y = f((x)). Если каждая из функций f и являются дифференцируемыми, то производная сложной функции согласно теореме (функция y = f((t)) дифференцируема в точке t, причем справедлива формула (f((t)))' = f'(x)'(t).) равна y' = f'(u)· u'. Тогда дифференциал функции dy = f'(x)dx = f'(u)u'dx = f'(u)du, так как u'dx = du. То есть dy = f'(u)du (5). Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала. Замечание. Отметим, что в формуле (4) dx = x, а в формуле (5) du яляется лишь линейной частью приращения функции u.