Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
34
Добавлен:
30.05.2015
Размер:
714.61 Кб
Скачать

этом смысле без барьерным. Чтобы составить физически ясную картину различии этих двух неравновесных переходов, необходимо проанализировать детальные механизмы переходов, что выходит за рамки термодинамики к находится в компетенции кинетики. Здесь эти механизмы будут охарактеризованы лишь в самых общих чертах.

Переход из метастабильного состояния осуществляется посредством зарождения в исходной однофазной системе локальных, чётко ограниченных частиц другой фазы – более плотной, жидкой в правой (при больших) метастабильной области диаграммы состояния, менее плотной, газообразной в левой метастабильной области. Это обстоятельство и облегчает, кстати сказать, идентификацию метастабильных фаз. После зарождения новой фазы (жидкой капли или газового пузырька) происходит постепенный переход атомов из исходной фазы в новую через резкую межфазную границу, что эквивалентно перемещению этой границы вглубь исходной фазы (рост новой фазы). Работа, затрачиваемая на создание межфазной границы, обусловливает существование термодинамического барьера между метастабильным и стабилбным состоянием.

Переход из лабильного состояния происходит иначе. Согласно современный представлениям (подробно рассматриваемым в последу­ющих главах применительно к подобным твердофазным системам), в лабильном состоянии развивается более или менее размытая волна плотности. Со временем величина этой амплитуды возрастает, и ис­ходная система расслаивается на более плотную (жидкую) и раз­реженную (газообразную) фазы. При таком механизме термодинамический барьер, отделявший исходное состояние от конечного, отсутствует. Подобный механизм ещё раз подчеркивает неразличимый текучий характер лабильного однофазного состояния противоположность метастабильному).

- 67-

§6 Равновесие фаз в системежидкость-газ (дополнительные сведения)

В §5 ради компактности изложения был опущен ряд вопросов, которые будут рассмотрены здесь: изобары Ван-дер-Ваальса, достижимость неустойчивых однофазных состояний, закритические явления.

изобары Ван- дер-Ваальса.

Прежде, чем приступить к анализу изобар Ван-дер-Ваальса, необходимо вывести ряд соотношений и формул. Поскольку - функция состояния (например, функция Т и), то (1.6.1)

является полным дифференциалом, Приравнивая друг другу "перекрестные" вторые производные, получим

(1.6.5) Далее, из _г _ . . % i

следует, что

(1.6.3) Подставляя (1.6.3) в (1.6.2) получим

CU6.4)

Соотношение (1.6.4) показывает, в частности, что изохорная теплоёмкость не зависит от объёма, если давление зависит от температуры линейно (при фиксированном V ), что имеет место в уравнении Ван~дер-Ваальса.

Подставляя (1.6.3) в (1.6.1)

Соседние файлы в папке 2011_09_27