Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вероятности методичка.doc
Скачиваний:
20
Добавлен:
27.05.2015
Размер:
1.13 Mб
Скачать

Вероятность произведения событий

Рассмотрим следующую задачу.

Пример5.Из колоды карт (36 листов) наудачу извлекаются две карты. Найти вероятности следующих событий:

а) вероятность появления двух тузов;

б) вероятность появления туза на втором месте при условии, что на первом месте был туз.

Решение. Ведем обозначения: событиеА– туз на первом месте, событиеВ– туз на втором, тогдаАВ– два туза. Имеем:. Два туза из имеющихся в колоде четырех можно вытащитьспособами; две карты из 36 можно вытащитьспособами. Тогда. Обозначимр(В/А) илирА(В)условная вероятность события В при условии, что событие А уже произошло. Если событиеАуже произошло, то в колоде осталось 35 карт и среди них только 3 туза. Таким образом,. Из решения этой задачи получаем:.

В общем случае, вероятность произведения двух событий равна вероятности произведения одного из них на условную вероятность второго при условии, что первое уже произошло:

р(АВ) = р(А) · р(В/А).

(7)

Если события АиВ независимы (т.е. появление любого из них не зависит от того, произошло другое событие или не произошло), тор(А/В) = р(А), р(В/А) = р(В) (не путать с несовместимыми событиями!). Для независимых событий вероятность произведения равна произведению вероятностей:р(АВ) = р(А) · р(В).

Для вероятности произведения nсобытий справедлива формула:

р(А1 · А2 ·…·Аn) = р(А1) · р(А2 1) · р(А31А2) ·…·р(Аn 1А2…Аn-1),

(8)

т.е. вероятность произведения nсобытий равна произведению вероятности одного из них на условные вероятности остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Для независимых в совокупности событий А1,…,Аn,т.е. событий попарно независимых, формула вероятности произведения существенно упрощается, а именно, вероятность произведения событий равна произведению вероятностей:

р(А1 · А2 ·…·Аn) = p(A1) · p(A2) · p(A3) ·… · p(An).

(9)

Пример 6. На карточках написаны буквы Ю, Р, Т, А. Карточки наудачу раскладываются на столе одна за другой. Найти вероятность появление слова ЮРТА.

Решение.Введем обозначения: событиеА1 - буква Ю на первом месте;А2 – Р на втором месте;А3– Т на третьем месте;А4 – на четвертом месте; слово ЮРТА появится, если событияА1, А2, А3, А4произойдут вместе. Вероятность этого события есть

Р(А1 ·А2 · А3 · А4) = р(А1) · р(А2 / А1) · р(А3 / А1А2) · р(А4 / А1А2А3) =

Эту задачу можно решить непосредственно пользуясь классическим определением вероятности: здесь число равновозможных исходов равно числу перестановок из четырех букв, т.е. n = P4 = 4! = 1 ·2 ·3 ·4 = 24. появлению слова ЮРТА благоприятствует одна перестановка. Следовательно, искомая вероятность равнар = .

Вероятность суммы двух событий

В случае классического определения вероятности дается способ ее вычисления. В общем случае дать способ вычисления вероятности конечно же нельзя. Тогда постулируют свойства вероятностей случайных событий.

  1. Предположим, что имеется некоторое множество случайных событий S:

а) U S, V S;

б) если А,В S, то иА +В S,S,А ·В S,т.е. мы всегда можем говорить о достоверном и невозможном событиях, о противоположных событиях, о сумме и произведении случайных событий.

  1. Для любого случайного события Аопределено некоторое числор = р(А), которое мы называем его вероятностью, причем0 р(А)1.

  2. р(U) = 1: вероятность достоверного события равна 1.

  3. Если события А1, А2,…, Аnпопарно несовместимы, то вероятность их суммы равна сумме вероятностей этих событий, т.е. еслиАi Аj= Vприij, тор(А1 + А2 +…+ An) = p(A1) + p(A2) +…+ p(An).

Все эти аксиомы совпадают с соответствующими свойствами классической вероятности, и в случае классического определения вероятности они могут быть доказаны. Из сформулированных аксиом можно легко получить формулы:

Р(А) + Р() = 1, р(V) = 0.

Также нетрудно доказать, что вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления:

p(А + В) = р(А) + р(В) – р(АВ).

(10)

Заметим, что эта формула не противоречит аксиоме 4, т.к., если события АиВнесовместимы, тор(АВ) = 0.

Пример 7.Два стрелка выстрелили в цель по одному разу. Вероятность попадания в цель первым стрелком равна 0.9; вторым – 0.8. Найти вероятность поражения цели.

Решение.Пусть событиеА – в цель попал первый стрелок,В – второй. Тогда событиеВ + Аозначает, что цель поражена:

Р(А + В) = р(А) + р(В) – р(АВ) = 0.8 + 0.9 – 0.80.9 = 0.98.

Эту задачу можно решить и другим способом:

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.