Нурушев Введение в поляризационную 2007
.pdfтого, существует “пороговое” явление при рТ 0,3 – 0,4 ГэВ/c. Сплошные линии – результаты линейного фита экспериментальных данных, и они
описываются формулами: AN+ (рТ, р) = (0,10 ± 0,03) – (0,28 ± 0,05)рТ (χ2 = 2/d.o.f. для 5 точек) и AN– (рТ, р) = –(0,06 ± 0,03) + (0,23 ± 0,04)
рТ (χ2/d.o.f. = 2,6 для 5 точек). Параметры наклона очень близки друг другу, точки пересечения нуля также подобны, указывая, что тот же самый механизм мог бы быть ответственен за односпиновые асимметрии в
инклюзивном рождении π+- и π–-мезонов поляризованным пучком антипротонов. Данные по инклюзивной асимметрии пионов в области фрагментации пучка стали очень важными не только из-за теоретического интереса (феноменология мягких взаимодействий), но также и по практической причине: эти реакции могут эффективно использоваться для поляриметрии поляризованных пучков протонов и антипротонов высокой энергии благодаря их большим сечениям и высокой анализирующей способности.
§57.4. Теоретические модели
Любая инклюзивная реакция может быть представлена на уровне партонной модели как своего рода свертка партонного распределения внутри первоначального адрона с сечением взаимодействия партонов и конечной функцией фрагментации партона. Поперечная спиновая асимметрия может обнаруживаться на любой из этих трех стадий. Соответственно, теоретические модели берут за основу либо асимметричные распределения партонов по рТ в поляризованных начальных протонах (эффект Сиверса), либо на уровне взаимодействия партон-партон (так называемый эффект Шведа), либо на зависимости функции фрагментации конечного партона от его поляризации (эффект Коллинза). Все три типа моделей были реализованы в практических вычислениях. Обсудим некоторые из этих моделей.
В работах [Artru (1993), Artru (1994)] для расчета асимметрии была предложена струнная модель типа Коллинза. В практических вычислениях принималось, что поляризация первичного кварка в подпроцессе рассеяния партонов может быть передана конечному кварку полностью (DNN равен единице). Постулировалась кварк-дикварковая композиция поляризованного протона. Две струны (q)-(qq) распадались согласно простому правилу Лунда. После кинематических вычислений и некоторых допущений были выполнены численные оценки AN для различных вариантов поляризации кварков. Если поляризация кварков следует волновой функции SU(6): Pu = +2/3 и Рd = –1/3, и получающаяся асимметрия существенно не согласуется с данными для отрицательных пионов. Были выбраны макси-
451
мально возможные поперечные поляризации кварков в протоне: Pu = 1 и Pd = –1. Результаты нанесены на рис. 1a сплошной линией (подобные вы-
числения для π– и π0 не показаны на рис. 1). Постоянная и независимая от параметра Бьеркена x кварковая поляризация ведет к большей асимметрии, чем это было измерено, в то время как зависимость поляризации кварка, пропорциональная x2, приводит к лучшему описанию экспериментальных данных.
Функции распределения партонов по поперечному импульсу внутри поляризованного адрона может оказаться несимметричной (эффект Сиверса). В работе [Anselmino (1994)] на основе релятивистского кваркпартонного подхода была развита модель, которая дает довольно хорошее описание асимметрии в инклюзивном рождении пионов. Шесть свободных параметров модели были определены методом наилучшей подгонки к
данным по асимметрии пионов. Зависимость от хF асимметрии π– при фиксированном pТ = 1,5 ГэВ/c показана на рис. 1b пунктиром. Подобные расчеты были выполнены и для π+ и π0 (они не показаны на рис. 1). Мо-
дель определяет знак асимметрии π0 как положительный.
Модель Шведа. Так как эта модель применялась только к данным для больших передач импульса рТ, а здесь рассматриваются относительно небольшие передачи, мы обсудим ее предсказания в соответствующем разделе.
§57.5. Односпиновая асимметрия при очень малых передачах поперечных импульсов
Результаты эксперимента E704 по измерению анализирующей способности упругого рр-рассеяния в области кулон-ядерной интерференции
(КЯИ, в английском переводе CNI-Coulomb-nuclear interference) представлены на рис. 2a [Akchurin (1993а)].
Мы можем задаться вопросом: какова ценность таких данных? Ответы будут следующими.
• Мы действительно видим ненулевую анализирующую способность АN. Величина и форма АN соответствует априорным теоретическим вы-
числениям [Kopeliovich (1974), Bourrely (1977), Buttimore (1978)]. Форму-
ла, использованная для фитирования, такова
|
|
z |
1,5 |
|
|
t |
|
|
8πα |
|
|
−3 |
|
2 |
|
AN |
= a |
|
|
, z = |
,t0 = |
|
|
3,12 10 |
(ГэВ/ с) |
. (4) |
|||||
+ z |
2 |
t0 |
3 |
σT |
|
|
|
||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
||||
Здесь σT обозначает полное сечение pp-взаимодействия, α – постоянная тонкой структуры; параметр a определен чуть ниже. Результат фити-
452
рования был следующим: a = (4,73 ± 0,92) %, с χ2/d.o.f. = 0,31 для 6 экспериментальных точек (см. рис. 2a, сплошная линия). Теоретическое ожида-
ние для a = |
3(µ −1) |
t p |
составляет 4,6 %, что иллюстрирует хорошее |
|
4 |
m |
|
||
|
|
|
||
согласие между предсказанием и экспериментом. Это первое экспериментальное подтверждение так называемого явления КЯИ в поляризационных исследованиях при высоких энергиях.
Рис. 2. Анализирующая способность AN для: (a) pp-pp, (b) прямых гамма-квантов,
(c) – (f) инклюзивного образования π0-мезонов в протонных и антипрононных пучках 200 ГэВ/c; на рис. 2с представлены также данные для более низких энергий
• Эти данные при таких малых значениях |t| интересны также для прямого определения из эксперимента спин-флиповой адронной амплитуды. Известно, что имеется указание на вклад померона в спин-флиповую амплитуду. Хотя эти данные не имеют достаточной статистики для оконча-
453
тельного ответа на вопрос о наличии спин-флипа (эксперимент не был посвящен такой физике), тем не менее некоторые оценки могут быть сделаны. Согласно работе [Akchurin (1993b)], отношение приведенной спинфлиповой амплитуды к амплитуде без спин-флипа ограничено из этих
данных значением β = 0,16 ± 0,06 для мнимой части и ρ = –0,02 ± 0,01 для вещественной части. Фитирование было выполнено включением данных вне области КЯИ. Это лучшая оценка спин-флиповой амплитуды для упругого pp-рассеяния в настоящее время. Теоретическая оценка с учетом динамически усиленного компактного дикварка и экспериментальных данных при 6 и 10 ГэВ/c дало значение 0,05 – 0,1 [Kopeliovich (1989)].
§57.6. Односпиновая асимметрия в инклюзивном образовании прямых фотонов в центральной области
Одиночная поперечно-спиновая асимметрия в рождении прямых фотонов была измерена впервые Сотрудничеством E704 [Adams (1995)]. Выделение прямого фотона было выполнено на основе тщательных измере-
ний выходов π0- и η-мезонов, которые являются основным источником фона. Поскольку сечение прямого рождении фотонов мало и оно определяется методом вычитания двух больших чисел, то необходимо приме-
нять различные способы подавления фонов. Так, телесный угол γ- детектора был увеличен в два раза в с.ц.м. с тем, чтобы уменьшить фон
одиночных фотонов от распада π0- и η-мезонов. Перед γ-детектором устанавливались пропорциональные камеры для отсечения фона от заряженных частиц, в основном электронов. Был выполнен большой объем работ по моделированию экспериментальной установки, правильного выбора режимов ее работы и определения эффективностей аппаратуры. Измерение поляризационной асимметрии намного сложнее, чем измерение сечений, так как в этом случае мы имеем дело с разностью двух практически равных величин – событий рассеяния налево и направо.
Результаты по односпиновой асимметрии прямых фотонов, рожденных в инклюзивной реакции p ↑ + p → γ + X в центральной области при
импульсе 200 ГэВ/c, представлены на рис. 2b в зависимости от xF. Данные были усреднены по измеренному диапазону pТ. Асимметрия в инклюзивном образовании прямых фотонов не противоречит нулевому значению в пределах экспериментальной точности. Результаты этого первого эксперимента по измерению асимметрии прямых фотонов указывают на отно-
сительно малую поляризацию глюона ∆G. Пунктирные и сплошные линии на рис. 2b иллюстрируют масштаб ожидаемых вкладов от высшего твиста-3 для двух параметризаций зависимости от х в так называемом приближении “глюонного полюса” [Qiu (1991)]. Приближение “фермион-
454
ного полюса” ведет к противоположному знаку эффекта [Korotkiyan (1995)]. Экспериментальные данные не могут при имеющейся точности измерений различить две модели, основанные на эффектах высшего твиста.
§57.7. Односпиновая асимметрия при больших поперечных импульсах pT
Измерение односпиновой асимметрии при больших поперечных импульсах в центральной области было выполнено в эксперименте E704
только для π0-мезонов [Adams (1996b)]. Результаты для односпиновой π0 инклюзивной асимметрии AN для поляризованного пучка протонов 200 ГэВ/c показаны на рис. 2c (заполненные кружки). В измеренной кинематической области AN согласуется с нулевым значением в пределах точности измерений. Следующий рисунок (2d) показывает асимметрию для случая, когда, по крайней мере, одна заряженная частица сопровождала π0-мезон, и вылетала эта частица в направлении, противоположном
направлению вылета π0-мезона в с.ц.м. Такой отбор может обогащать струйно-подобные события, т.е. процесс жестких соударений партонов. Измеренная односпиновая асимметрия также совместима с нулевым значением. Аналогичные измерения были выполнены и на поляризованном пучке антипротонов (см. рис. 2e и 2f). Результаты также совместимы с нулем.
Незначительные односпиновые асимметрии при больших рТ в инклю-
зивном рождении π0-мезонов протонными и антипротонными пучками с импульсом 200 ГэВ/c (рис. 2c и 2d) ставят вопрос относительно больших асимметрий, наблюдавшихся при 24 ГэВ/c (ЦЕРН) [Antille (1980)] и при
40 ГэВ/c Сотрудничеством PROZA (ИФВЭ) [Apokin (1990)]. На рис. 2c
эти данные также представлены (результаты для 24 ГэВ/с помечены звездочками, результаты при 40 ГэВ/с отмечены открытыми квадратиками), так что можно провести сравнение этих данных. Линейный фит вида AN(pT) = a(1)(pT – pT0) приводит к следующим результатам:
• p + p↑ = π0 + X, 24 ГэВ/c
AN (pT) = (0,28 ± 0,11) [pT – (1,25 ± 0,06)], χ2/d.o.f. = 1,2 для 6 точек;
• π– + p↑ = π0 + X, 40 ГэВ/c
AN(pT) = (0,33 ± 0,08) [pT – (1,5 ± 0,10)], χ2/d.o.f. = 1,2 для 8 точек;
• p + p↑ = π0 + X, 200 ГэВ/c
AN(pT) = (0,007 ± 0,005) [pT – (1,72 ± 0,35)], χ2/d.o.f. = 1,4 для 15 точек.
455
Глядя на эти результаты и на рис. 2c, можно заключить, что асимметрия для pp-реакции, кажется, уменьшается с энергией. Это заключение подтверждается параметром наклона а(l), изменяющимся от 0,28 ± 0,11 при 24 ГэВ/c до 0,007 ± 0,005 при 200 ГэВ/c. Малые значения параметра наклона были также получены при 200 ГэВ/c для инклюзивной асиммет-
рии π0-мезонов, рожденных поляризованным пучком антипротонов (см. рис. 2e) и в реакциях с зарядовым сопряжением (рис. 2d – 2f). Второе заключение относится к точке, где возникает ненулевая асимметрия. Соот-
ветствующий параметр pT0 принимает следующие значения: при 24 ГэВ/c pT0 = 1,25 ± 0,06 ГэВ/c, при 40 ГэВ/c pT0 = 1,5 ± 0,1 ГэВ/c и при 200 ГэВ/c
pT0 = 1,72 ± 0,35 ГэВ/c. Таким образом, параметр pT0 имеет тенденцию
расти с энергией. Чтобы сравнивать эти заключения с модельными предсказаниями, выберем модель Шведа [Szwed (1990)], которая основана на двух приближениях: (a) на кварковом уровне партоны налетающей частицы рассеиваются на внешнеем глюонном поле, и (b) процесс адронизации идет через рекомбинационную модель. Поляризация в этой модели появляется во втором порядке пертурбационных вычислений. Результат вычислений по этой модели для 24 ГэВ/c показан сплошной линией на рис. 2c. С увеличением энергии асимметрия уменьшается в соответствии с первым нашим заключением. Модель Шведа не предсказывает никаких изменений знака асимметрии, и этот факт противоречит второму нашему заключению, сделанному выше.
Кроме того, кратко упомянем о нескольких других теоретических моделях, относящихся к обсуждаемым данным.
• Для асимметрии в инклюзивных процессах в работе [Ryskin (1989)] была предложена простая модель, аналогичная известному соотношению Ферми [Fermi (1954)]. Предполагая, что спин кварка взаимодействует с хромомагнитным полем цветной струны, было показано, что соблюдается соотношение между односпиновой асимметрией и инклюзивным сечением
AN ~ δpT [d / dpT ][dσ/ d 3 p][/ dσ/ d 3 p], |
(5) |
где δpТ – дополнительный поперечный импульс, приобретенный кварком при разрыве струны. Предполагается, что в дальнейшем этот дополнительный “кик” передается конечному адрону с разным знаком в зависимости от ориентации спина поляризованного кварка. Это соотношение использовалось также для каона, так же как и для прямого рождения фотонов. Ранее эта модель была успешно применена к данным эксперимента
PROZA по односпиновой асимметрии в инклюзивном рождения π0-
456
мезонов при больших рТ. Недавно эта модель была модифицирована и успешно использовалась для описания большинства представленных выше экспериментальных данных [Нурушев (2006)]. Модель дает простую аналитическую зависимость для односпиновой инклюзивной асимметрии. Причем работает практически во всей кинематической области. Эта модель подробно представлена в первой части книги, в разделе “теоретические модели”.
•Односпиновая асимметрия для π0-мезонов с большим рТ, как ожидается, будет нулевой согласно пертурбативной КХД. Данные с эксперимента E704 (см. рис. 2c – 2f, заполненные кружки) подтвердили это ожидание.
•Согласно модели вращающихся кварков, односпиновая асимметрия должна быть нулевой в центральных соударениях [Meng Ta-chung (1991), Boros (1993)]. Эти утверждения справедливы для данных при 200 ГэВ/c.
•Была предложена модель для описания односпиновой асимметрии в инклюзивном рождении адронов при большом поперечном импульсе [Troshin (1995)]. Главная идея этой модели состоит в том, чтобы объяснить спиновую структуру адрона спиновой структурой конституентных кварков: конституентные кварки выступают как квазичастицы, состоящие из токовых кварков и окружающего их облака кварк-антикварковых пар различных ароматов. Односпиновая асимметрия в рождении адронов пропорциональна орбитальному угловому моменту токовых кварков внутри конституентного кварка. После введения некоторой феноменологической параметризации функций распределения кварков авторы смогли вычис-
лить анализирующую способность инклюзивного рождения π0-мезонов. Когда они использовали волновую функцию SU(6) для поляризованного протона, предсказанная асимметрия стала систематически выше экспериментальных значений, полученных в E704. Более последовательное описание экспериментальных результатов было достигнуто в случае, когда поляризациям конституентных кварков были приписаны их максимальные величины. В этом смысле такой результат поддерживает заключение, сделанное выше моделью типа Коллинза, что волновая функция поляризованного протона не следует точно предсказниям SU(6). Другие заключения: асимметрия становится отличной от нуля при pТ > 1 ГэВ/c, асимметрия слабо зависит от первичной энергии и асимметрии для заряженных пионов больше, чем для нейтрального пиона. Эти предсказания заслуживают проверки.
Сотрудничество БНЛ измерило односпиновые асимметрии в инклю-
зивном рождении π± [Saroff (1990)] для 13,3 и 18,5 ГэВ/c и выдвинуло гипотезу о возможном законе подобия (скейлинга) в зависимости асим-
метрии от хT или xF. Она основывалась только на данных по π+ (рис. 3a),
457
так как асимметрия π– была незначительна в области больших хT. Поскольку диапазон энергии был узок, было трудно обосновать любой закон подобия о независимости асимметрии от энергии. Недавно Сотрудничество ФОДС-2 опубликовало результаты измерений инклюзивной асиммет-
рии в рождении заряженных частиц (пионы, каоны, p и p) [Abramov (1996)]. Использовался пучок поляризованных протонов с импульсом
40 ГэВ/c от распада Λ-гиперонов. Результат для асимметрии π+ показан на рис. 3a открытыми кружками.
Рис. 3. Анализирующая способность AN для: (a) π+-мезонов, (b) точки пересечения нуля x0, (c) параметра наклона А0, (d) масштабирующая (скейлинговая) функция gs(xT)
458
Оказывается, что новые данные ФОДС-2 подтверждают в некоторой степени закон подобия для хF. Результаты линейного фитирования к данным на рис. 3a таковы:
13,3 ГэВ/c
АN+ (xT) = (0,32 ± 0,09) [хT – (0,32 ± 0,04)], χ2/d.o.f. = 1,9 для 10 точек; 18,5 ГэВ/c
АN+ (xT) = (0,58 ± 0,14) [хT – (0,39 ± 0,02)], χ2/d.o.f. = 0,51 для 9 точек; 40 ГэВ/c
АN+ (xT) = (0,33 ± 0,08) [хT – (0,38 ± 0,02)], χ2/d.o.f. = 0,8 для 12 точек.
Из данных по АN+ сразу могут быть сделаны два заключения: (а) параметр наклона приблизительно постоянен, и (b) то же самое справедливо
для точки пересечения нуля xT0 . Это означает, что асимметрия π+ масштабируется с энергией. Для полноты было сделано аналогичное фитиро-
вание к экспериментальным данным по инклюзивной асимметрии π0, показанные на рис. 2c:
24 ГэВ/c
АN0 (xT) = (0,94 ± 0,37) [хT – (0,38 ± 0,02)], χ2/d.o.f. = 1,2 для 6 точек; 40 ГэВ/c
АN0 (xT) = (1,43 ± 0,35) [хT – (0,35 ± 0,02)], χ2/d.o.f. = 1,2 для 6 точек; 200 ГэВ/c
АN0 (xT) = (0,06 ± 0,05) [хT – (0,18 ± 0,04)], χ2/d.o.f. = 1,4 для 15 точек.
Из совокупности данных шести экспериментов можно извлечь зависимости от энергии двух свободных параметров: параметра наклона, мы
обозначаем его A0, и точки xT0 пересечения нулевого уровня асимметрии. Их зависимость от энергии была параметризована как линейная функция от
s , и параметры были определены фитированием к вышеприведенным данным. Получены следующие результаты:
xT0 = (0,013 ± 0,005) [(36 ± 12) –
s ], χ2/d.o.f. = 1,2 на 6 точек,
A0 = (0,03 ± 0,006) [(22 ± 3) –
s ], χ2/d.o.f. = 3,5 на 6 точек.
Зависимость xT0 от энергии представлена на рис. 3b. Имеются призна-
ки, что точка пересечения асимметрией нуля xT0 уменьшается с энергией.
Это заключение основано только на одной точке для 200 ГэВ/c, которая может быть неустойчива к нулевой асимметрии, поэтому необходимы новые данные. Что касается параметра наклона (см. рис. 3c, то имеется резкое изменение в его зависимости от энергии вблизи 40 ГэВ/c (предостережение: имеются две точки при 40 ГэВ/c. Одна происходит из резуль-
459
татов на пучке π–, верхняя точка, другая – из результатов на пучке поляризованных протонов, нижняя точка). Среди шести экспериментальных
точек половина относится к π+-, а другая половина – к π0- асимметрии. Крутое изменение параметра наклона с энергией относится только к π0 (самое большое по энергии значение происходит из данных по π0). Так как описание распределения по χ2 не очень хорошее, требуется большее
количество экспериментальных данных для π0, чтобы прояснить ситуацию с двумя параметрами. Оба этих параметра важны для испытания теоретических моделей.
Вид закона подобия (скейлинга), ожидаемого от жесткого рассеяния партонов, был выведен из общих кинематических ограничений Сиверсом [Sivers (1991)]. Принимая возможность асимметричного распределения партонов по kT внутри поляризованного протона, можно получить заметную асимметрию в рождендии адронов. Сиверс предложил следующую скейлинговую функцию:
|
p2 |
+µ2 |
|
|
g(xT, µ) = AN(xT) |
T |
|
, |
(6) |
|
|
|||
|
µ pt |
|
||
где µ – некоторый масштаб адронной массы с mq << µ << pT. Функция
g(xT, µ) содержит информацию о мягко-когерентной динамике, и она не может быть рассчитана моделями жесткого рассеяния. В такой ситуации
можно пытаться реконструировать поведение g(xT, µ) из эксперименталь-
ных данных. Полагая µ2 = 0,5, искомая функция g(xT, µ) представлена на рис. 3d. Вообще кажется, что данные не проясняют ситуацию со скейлин-
гом, если учесть, что данные по π0 для 24 и 40 ГэВ/c имеют большие ошибки. Очевидно, нужны более качественные измерения, чтобы сделать заключение относительно закона подобия, предложенного Сиверсом.
Список литературы
Нурушев С.Б., Рыскин М.Г. ЯФ 69 (2006) 1.
Abramov V. V. et al. Preprint IHEP-96-82, Protvino (1996). Adams D. L. et al. Phys. Lett. B264 (1991) 462.
Adams D. L. et al. Z. Phys. C56 (1992) 181. Adams D. L. et al. Phys. Lett. B345 (1995) 569.
Adams D. L. et al. Phys. Rev. Lett. 77 (1996a) 2626. Adams D. L. et al. Phys. Rev. D53 (1996b) 4747. Akchurin N. et al. Phys. Rev. D48 (1993а) 3026.
Akchurin N., Buttimore N., Penzo A. Vth Blois Workshop, Providence, Rhode Island, (1993b).
460
