Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Determination of Complex Reaction Mechanisms.pdf
Скачиваний:
45
Добавлен:
15.08.2013
Размер:
7.63 Mб
Скачать

166DETERMINATION OF COMPLEX REACTION MECHANISMS

11.5Limits of Stoichiometric Network Analysis

As this example shows, stoichiometric network analysis yields only possibilities of reaction mechanisms, it does not lead to the determination of which of many possible reaction pathways corresponds to experiments. We need to know the rate coefficients of the system to determine paths in the system by which reactants proceed to form products. This distinction has been overlooked in a number of studies on complex biochemical reaction mechanisms (see Schilling et al. [82] and references therein).

Acknowledgments This chapter is based mainly on work published in refs. [1–9], where the ideas of the stoichiometric network analysis [10] were utilized to identify several distinct topological features in chemical networks that provide oscillatory instabilities and from that derive a classification system for chemical oscillators and species taking part in these oscillations.

References

[1]Eiswirth, M.; Freund, A.; Ross, J. Mechanistic classification of chemical oscillators and the role of species. Adv. Chem. Phys. 1991, 90, 127–199; Operational procedure toward the classification of chemical oscillators. J. Phys. Chem. 1991, 95, 1294–1299.

[2]Stemwedel, J. D.; Schreiber, I.; Ross, J. Formulation of oscillatory reaction-mechanisms by deduction from experiments. Adv. Chem. Phys. 1995, 89, 327–388.

[3]Stemwedel, J.; Ross, J. Experimental determination of bifurcation features of the chlorite iodide reaction. J. Phys. Chem. 1993, 97, 2863–2867.

[4]Stemwedel, J.; Ross, J. New measurements on the chlorite iodide reaction and deduction of roles of species and categorization. J. Phys. Chem. 1995, 99, 1988–1994.

[5]Strasser, P.; Stemwedel, J. D.; Ross, J. Analysis of a mechanism of the chlorite iodide reaction. J. Phys. Chem. 1993, 97, 2851–2862.

[6]Hung, Y.-F.; Ross, J. New experimental methods toward the deduction of the mechanism of the oscillatory peroxidase oxidase reaction. J. Phys. Chem. 1995, 99, 1974–1979.

[7]Chevalier, T.; Schreiber, I.; Ross, J. Toward a systematic determination of complex-reaction mechanisms. J. Phys. Chem. 1993, 97, 6776–6787.

[8]Schreiber, I.; Hung, Y.-F.; Ross, J. Categorization of some oscillatory enzymatic reactions.

J. Phys. Chem. 1996, 100, 8556–8566.

[9]Schreiber, I.; Ross, J. Mechanisms of oscillatory reactions deduced from bifurcation diagrams. J. Phys. Chem. 2003, 107, 9846–9859.

[10]Clarke, B. L. Stability of complex reaction networks. Adv. Chem. Phys. 1980, 43, 1–278.

[11]Gray, P.; Griffiths, J. F.; Hasko, S. M.; Lignola, P. G. Oscillatory ignitions and cool flames accompanying the non-isothermal oxidation of acetaldehyde in a well stirred, flow reactor.

Proc. Roy. Soc. Lond. A 1981, 374, 313–339.

[12]Skrumeda, L. L.; Ross, J. Further measurements on the oscillatory cool flame oxidation of acetaldehyde and comparison with reaction-mechanism models. J. Phys. Chem. 1995, 99, 12835–12845.

[13]Chang, M.; Schmitz, R. A. An experimental study of oscillatory states in a stirred reactor.

Chem. Eng. Sci. 1975, 30, 21–34.

[14]Puszynski, J.; Hlavacek, V. Experimental study of ignition and extinction waves and oscillatory behavior of a tubular nonadiabatic fixed-bed reactor for the oxidation of carbon monoxide. Chem. Eng. Sci. 1984, 39, 681–692.

[15]Belousov, B. P. A periodic reaction and its mechanism. In Sbornik referatov po radiatsionnoj medicine za 1958 g. (conference proceedings); Medgiz: Moscow, 1959, p 145.

[16]Zhabotinsky, A. M. Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics). Biofizika 1964, 9, 306–311.

OSCILLATORY REACTIONS

167

[17]Field, R. J.; Körös, E.; Noyes, R. M. Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 1972, 94, 8649–8664.

[18]Feinberg, M. Complex balancing in general kinetic systems. Arch. Rat. Mech. Anal. 1972, 49, 187–194; Chemical-reaction network structure and the stability of complex isothermal reactors. 1. The deficiency-zero and deficiency-one theorems. Chem. Eng. Sci. 1987, 42, 2229–2268; Chemical-reaction network structure and the stability of complex isothermal reactors. 2. Multiple steady-states for networks of deficiency one. Chem. Eng. Sci. 1988, 43, 1–25.

[19]Luo, Y.; Epstein, I. R. Systematic design of chemical oscillators. 58. Feedback analysis of mechanisms for chemical oscillators. Adv. Chem. Phys. 1990, 79, 269–299.

[20]Epstein, I. R.; Pojman, J. A. Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns and Chaos; Oxford University Press: New York, 1998.

[21]Gray, P.; Scott, S. K. Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics; Oxford University Press: Oxford, 1990.

[22]Chance, B.; Pye, E. K.; Ghosh, A. K.; Hess, B., Eds. Biological and Biochemical Oscillator; Academic Press: New York, 1973.

[23]Goldbeter, A.; Caplan, S. R. Oscillatory enzymes. Annu. Rev. Biophys. Bioeng. 1976, 5, 449–476.

[24]Rapp, P. E. An atlas of cellular oscillators. J. Exp. Biol. 1979, 81, 281–306.

[25]Rapp, P. E.; Berridge, M. J. The control of trans-epithelial potential oscillations in the salivary gland of Calliphora erythrocephala. J. Exp. Biol. 1981, 93, 119–132.

[26]Ross, J.; Schell, M. Thermodynamic efficiency in nonlinear biochemical reactions. Annu. Rev. Biophys. Biophys. Chem. 1987, 16, 401–422.

[27]Goldbeter, A. Biochemical Oscillations and Cellular Rhythms; Cambridge University Press: Cambridge, 1996.

[28]Aidley, D. J. The Physiology of Excitable Cells; Cambridge University Press: Cambridge, 1998.

[29]Lauffenburger, D. A.; Lindermann, J. J. Receptors: Models for Binding, Trafficking, and Signalling; Oxford University Press: New York, 1993.

[30]Sel’kov, E. E. Stabilization of energy charge, generation of oscillation and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 1975, 59, 151–157.

[31]Rapp, P. E.; Mees, A. I.; Sparrow, C. T. Frequency encoded biochemical regulation is more accurate than amplitude dependent control. J. Theor. Biol. 1981, 90, 531–544.

[32]Keener, J.; Sneyd, J. Mathematical Physiology; Springer-Verlag: New York, 1998.

[33]Fall, C. P.; Marland, E. S.; Wagner, J. M.; Tyson, J. J., Eds. Computational Cell Biology; Springer-Verlag: New York, 2002.

[34]Meyer, T.; Stryer, L. Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 1991, 20, 153–174.

[35]Dupont, G.; Goldbeter, A. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium 1993, 14, 311–322.

[36]Smolen, P.; Baxter, D. A.; Byrne, J. H. Modeling transcriptional control in gene networks—methods, recent results, and future directions. Bull. Math. Biol. 2000, 62, 247–292.

[37]Hasty, J.; Isaacs, F.; Dolnik, M.; McMillen, D.; Collins, J. J. Designer gene networks: towards fundamental cellular control. Chaos 2001, 11, 207–220.

[38]Tyson, J. J. Classification of instabilities in chemical reaction systems. J. Chem. Phys. 1975, 62, 1010–1015.

[39]Epstein, I. R.; Kustin, K. Systematic design of chemical oscillators. 27. A mechanism for dynamical behavior in the oscillatory chlorite iodide reaction. J. Phys. Chem. 1985, 89, 2275–2282.

[40]Citri, O.; Epstein, I. R. Systematic design of chemical oscillators. 42. Dynamic behavior in the chlorite iodide reaction—a simplified mechanism. J. Phys. Chem. 1987, 91, 6034–6040.

[41]Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields; Springer-Verlag: New York, 1983.

168 DETERMINATION OF COMPLEX REACTION MECHANISMS

[42]Doedel, E. J.; Keller, H. B.; Kernévez, J. P. Numerical analysis and control of bifurcation problems: (I) Bifurcation in finite dimensions. Int. J. Bifurcation & Chaos 1991, 1, 493–520; Numerical analysis and control of bifurcation problems: (II) Bifurcation in infinite dimensions. Int. J. Bifurcation & Chaos 1991, 1, 745–772.

[43]Doedel, E. J.; Paffenroth, R. C.; Champneys; A. R.; Fairgrieve, T. F.; Kuznetsov, Yu. A.; Sandstede, B.; Wang, X. AUTO 2000: continuation and bifurcation software for ordinary differential equations (with HomCont); Technical Report, Caltech, February 2001.

[44]Kubícek,ˇ M.; Marek, M. Computational Methods in Bifurcation Theory and Dissipative Structures; New York: Springer, 1983; Marek, M.; Schreiber, I. Chaotic Behaviour of Deterministic Dissipative Systems; Cambridge University Press: Cambridge, 1995.

[45]Kohout, M.; Schreiber, I.; Kubícek,ˇ M. A computational tool for nonlinear dynamical and bifurcation analysis of chemical engineering problems. Comput. Chem. Eng. 2002, 26, 517–527.

[46]Boissonade, J.; De Kepper, P. Transitions from bistability to limit cycle oscillations— theoretical analysis and experimental evidence in an open chemical system. J. Phys. Chem. 1980, 84, 501–506.

[47]Clarke, B. L.; Jiang, W. M. Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov–Zhabotinskii system. J. Chem. Phys. 1993, 99, 4464–4478.

[48]Hynne, F.; Sørensen, P. G.; Nielsen, K. Quenching of chemical oscillations: general theory.

J.Chem. Phys. 1990, 92, 1747–1757; Sørensen, P. G.; Hynne, F.; Nielsen, K. Characteristic modes of oscillatory chemical reactions. J. Chem. Phys. 1990, 92, 4778–4785.

[49]Eiswirth, M.; Bürger, J.; Strasser, P.; Ertl, G. Oscillating Langmuir–Hinshelwood mechanisms. J. Phys. Chem. 1996, 100, 19118–19123.

[50]Eiswirth, M. Unpublished results.

[51]Degn, H.; Olsen, L. F.; Perram, J. Bistability, oscillation, and chaos in an enzyme reaction.

Ann. N. Y. Acad. Sci. 1979, 316, 623–637.

[52]Olsen, L. F.; Hofman Frisch, L.-L.; Schaffer, W. M. In Chaotic Hierarchy, Baier, G. Klein, M., Eds.; World Scientific: Singapore, 1991; p 299.

[53]Noszticzius, Z.; McCormick, W. D.; Swinney, H. L. Use of bifurcation diagrams as fingerprints of chemical mechanisms. J. Phys. Chem. 1989, 93, 2796–2800.

[54]Olsen, R. J.; Epstein, I. R. Bifurcation analysis of chemical reaction mechanisms. 1. Steadystate bifurcation structure. J. Chem. Phys. 1991, 94, 3083–3095; Bifurcation analysis of chemical reaction mechanisms. 2. Hopf bifurcation analysis. J. Chem. Phys. 1993, 98, 2805–2822.

[55]Ringland, J. Rapid reconnaissance of a model of a chemical oscillator by numerical continuation of a bifurcation feature of codimension-2. J. Chem. Phys. 1991, 95, 555–562.

[56]Hynne, F.; Sørensen, P. Quenching of chemical oscillations. J. Phys. Chem. 1987, 91, 6573–6575; Sørensen, P.; Hynne, F. Amplitudes and phases of small-amplitude Belousov–Zhabotinskii oscillations derived from quenching experiments. J. Phys. Chem. 1989, 93, 5467–5474.

[57]Hynne, F.; Sørensen, P.; Møller, T. Current and eigenvector analyses of chemical reaction networks at Hopf bifurcations. J. Chem. Phys. 1992, 98, 211–218; Complete optimization of models of the Belousov–Zhabotinsky reaction at a Hopf bifurcation. J. Chem. Phys. 1992, 98, 219–230.

[58]Winfree, A. T. The Geometry of Biological Time; Springer-Verlag: New York, 1980.

[59]Ruoff, P.; Forsterling, H.-D.; Gyorgyi, L.; Noyes, R. M. Bromous acid perturbations in the Belousov–Zhabotinsky reaction—experiments and model calculations of phase response curves. J. Phys. Chem. 1991, 95, 9314–9320.

[60]Dolník, M.; Schreiber, I.; Marek, M. Dynamic regimes in a periodically forced reaction cell with oscillatory chemical reaction. Physica D 1986, 21, 78–92.

[61]Davies, M. L.; Schreiber, I.; Scott, S. K. Dynamical behaviour of the Belousov–Zhabotinsky reaction in a fed-batch reactor. Chem. Eng. Sci. 2004, 59, 139–148.

[62]Dolník, M.; Marek, M.; Epstein, I. R. Resonances in periodically forced excitable systems.

J.Phys. Chem. 1992, 96, 3218–3224.

[63]Vance, W.; Ross, J. Entrainment, phase resetting, and quenching of chemical oscillations.

J.Chem. Phys. 1995, 103, 2472–2481.

OSCILLATORY REACTIONS

169

[64]Millet, I.; Vance, W.; Ross, J. Measurements of phase response in an oscillatory reaction and deduction of components of the adjoint eigenvector. J. Phys. Chem. 1999, 103, 8252–8256.

[65]Loud, W. S. Phase shift and locking-in regions. Q. J. Appl. Math. 1967, 25, 222.

[66]Hjelmfelt, A.; Ross, J. Experimental stabilization of unstable steady states in oscillatory and excitable systems. J. Phys. Chem. 1994, 98, 1176–1179.

[67]Petrov, V.; Metens, S.; Borckmans, P.; Dewel, G.; Showalter, K. Tracking unstable Turing patterns through mixed-mode spatiotemporal chaos. Phys. Rev. Lett. 1995, 75, 2895–2898.

[68]Petrov, V.; Mihaliuk, E.; Scott, S. K.; Showalter, K. Stabilizing and characterizing unstable states in high-dimensional systems from time series. Phys. Rev. E 1995, 51, 3988–3996.

[69]Mihaliuk, E.; Skødt, H.; Hynne, F.; Sørensen, P.-G.; Showalter, K. Normal modes for chemical reactions from time series analysis. J. Phys. Chem. A 1999, 103, 8246–8251.

[70]Nakamura, S.; Yokota, K.; Yamazaki, I. Sustained oscillations in a lactoperoxidase, NADPH and O2 system. Nature 1969, 222, 794.

[71]Degn, H. Bistability caused by substrate inhibition of peroxidase in an open reaction system. Nature 1968, 217, 1047–1050.

[72]Olsen, L. F.; Degn, H. Chaos in an enzyme reaction. Nature 1977, 267, 177–178.

[73]Samples, M. S.; Hung, Y.-F.; Ross, J. Further experimental studies on the horseradish peroxidase oxidase reaction. J. Phys. Chem. 1992, 96, 7338–7342.

[74]Steinmetz, C. G.; Geest, T.; Larter, R. Universality in the peroxidase oxidase reaction— period doublings, chaos, period 3, and unstable limit cycles. J. Phys. Chem. 1993, 97, 5649–5653.

[75]Olsen, L. F.; Kummer, U.; Kindzelskii, A. L.; Petty, H. R. A model of the oscillatory metabolism of activated neutrophils. Biophys. J. 2003, 84, 69–81.

[76]Scheeline, A.; Olson, D. L.; Williksen, E. P.; Horras, G. A.; Klein, M. L.; Larter, R. The peroxidase–oxidase oscillator and its constituent chemistries. Chem. Rev. 1997, 97, 739–756.

[77]Aguda, B.; Clarke, B. L. Bistability in chemical reaction networks—theory and application to the peroxidase–oxidase reaction. J. Chem. Phys. 1987, 87, 3461–3470.

[78]Hung, Y.-F.; Schreiber, I.; Ross, J. New reaction-mechanism for the oscillatory peroxidase oxidase reaction and comparison with experiments. J. Phys. Chem. 1995, 99, 1980–1987.

[79]Dateo, C. E.; Orban, M.; De Kepper, P.; Epstein, I. R. Systematic design of chemical oscillators. 5. Bistability and oscillations in the autocatalytic chlorite–iodide reaction in a stirred flow reactor. J. Am. Chem. Soc. 1982, 104, 504–509.

[80]De Kepper, P.; Boissonade, J.; Epstein, I. R. Chlorite–iodide reaction—a versatile system for the study of nonlinear dynamic behavior. J. Phys. Chem. 1990, 94, 6525–6536.

[81]Luo, Y.; Epstein, I. R. Systematic design of chemical oscillators. 38. Stirring and premixing effects in the oscillatory chlorite–iodide reaction. J. Chem. Phys. 1986, 85, 5733–5740.

[82]Schilling, C. H.; Schuster, S.; Palsson, B. O.; Heinrich, R. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 1999, 15, 296–303.

12

Lifetime and Transit Time

Distributions and Response

Experiments in Chemical Kinetics

We discussed some aspects of the responses of chemical systems, linear or nonlinear, to perturbations on several earlier occasions. The first was the responses of the chemical species in a reaction mechanism (a network) in a nonequilibrium stable stationary state to a pulse in concentration of one species. We referred to this approach as the “pulse method” (see chapter 5 for theory and chapter 6 for experiments). Second, we studied the time series of the responses of concentrations to repeated random perturbations, the formulation of correlation functions from such measurements, and the construction of the correlation metric (see chapter 7 for theory and chapter 8 for experiments). Third, in the investigation of oscillatory chemical reactions we showed that the responses of a chemical system in a stable stationary state close to a Hopf bifurcation are related to the category of the oscillatory reaction and to the role of the essential species in the system (see chapter 11 for theory and experiments). In each of these cases the responses yield important information about the reaction pathway and the reaction mechanism.

In this chapter we focus on the design of simple types of response experiments that make it possible to extract mechanistic and kinetic information from complex nonlinear reaction systems. The main idea is to use “neutral” labeled compounds (tracers), which have the same kinetic and transport properties as the unlabeled compounds. In our previous work [1–12] we have shown that by using neutral tracers a class of response experiments can be described by linear response laws, even though the underlying kinetic equations are highly nonlinear. The linear response is not the result of a linearization procedure, but it is due to the use of neutral tracers. As a result the response is linear even for large perturbations, making it possible to investigate global nonlinear kinetics by making use of linear mathematical techniques. Moreover, the susceptibility functions from the response law are related to the probability densities of the lifetimes and transit

170

Соседние файлы в предмете Химия