Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТВ лек1.doc
Скачиваний:
160
Добавлен:
20.05.2015
Размер:
648.7 Кб
Скачать

Формула Байеса

Теорема 4. Пусть имеется полная группа несовместных событий B1, B2,..., Bn. Известны Р(Bi), . Событие А, для которого Р(А)>0 может произойти толь с одним из. Известны Р(А/Bi), . Тогда апостериорная вероятность Р(Bk/А) определяется формулой:

(2)

Доказательство По определению

На основе формулы полной вероятности получаем:

  1. - формула Байеса.

Вероятности Р(Bk) называются априорными (a priori - до опыта) вероятностями; Р(Bk/А) - апостериорными (a posteriori - после опыта). События Bi часто называют гипотезами.

Пример. В урне лежит шар неизвестного цвета, с равной вероятностью белый или черный. В урну кладут белый шар, перемешивают и вынимают наудачу шар. Он оказался белым. Какова вероятность того, что в урне остался белый шар?

Решение: Обозначим событие А={вынут белый шар}

B1={в урне остался белый шар}={в урне был белый шар}; B2={в урне черный шар}. Очевидно, Р(B1)=Р(B2)=1/2; P(A/ B1)=1; P(A/ B2)=1/2. Необходимо найти Р(B1/А).

По формуле Байеса:

Ответ: Р(B1/А)=2/3

Таким образом, апостериорная вероятность события B1 существенно больше априорной.

Схема независимых испытаний Бернулли

Независимость опытов (испытаний, экспериментов). Пусть имеется два произвольных опыта G1 и G2 и соответствующие им вероятностные пространства: <W1,F1,P1> и <W2,F2,P2> . Рассмотрим составной эксперимент G с вероятностным пространством <W,F,P>, где W=W1´W2 - прямое произведение W1 и W2, а s-алгебра F порождена событиями ВÎF, где В=В1´В2, В1ÎF1, В2ÎF2 .

Замечание: Прямым произведением W=W1´W2 называется множество W, элементами которого являются упорядоченные пары элементов пространств W1 и W2; т.е. если W1={wi(1)}, a W2={wj(2)}, то W={wi(1) wj(2)}, где wi(1) и wj(2) - любой элемент W1 и W2 соответственно.

Испытания G1 и G2 независимы, если для любых В=В1´В2 выполняется равенство: Р(В)=Р1122).

Последовательность n испытаний G1, G2,..., Gn называется независимой, если Р(В)=Р1122)...Рnn), где В=В1´В2´...´Вn , Вк ÎFк, <Wк,Fк,Pк> - вероятностное пространство, соответствующее k-му эксперименту.

Схема независимых испытаний Бернулли: Рассмотрим n независимых испытаний Gk, . В каждом из этих испытаний событие А может появиться с одной и той же вероятностью Р(А)=р и не появиться с вероятностью q=1-p=P(). Такая совокупность испытаний называется схемой независимых испытаний Бернулли.

Вероятность появления в n испытаниях события А m раз. Рассмотрим вероятностное пространство отдельного эксперимента <Wк,Fк,Pк>, где Wк={A, } - пространство элементарных событий. Совокупность n - испытаний представляет собой составной эксперимент с вероятностным пространством <W,F,P>, где W={wi}- пространство элементарных событий, элементы которого wi -и упорядоченные совокупности из n элементов А и :

, , и т.д.

Так как эксперименты независимы, то

Р (АА...А)=рр...р=рn – вероятность того, что n раз появится событие А.

Р(...)=qq...q=qn – вероятность того, что А не появится ни разу.

–вероятность того, что в первых m событиях А появится, а в (n-m) - не появится.

Нас интересует вероятность события Вm={А появилось в n испытаниях m раз} независимо от порядка их появления:

Обозначим Р(Вм)=Рn(m), тогда

(1)

где .

Формула (1) - формула Бернулли или биномиальный закон распределения вероятностей.

События Вm , m=0..n составляют полную группу несовместных событий, поэтому

(2)

Вероятность того, что событие А при n испытаниях произойдет не более k раз:

(3)

Вероятность того, что при n испытаниях событие А произойдет более k раз

(4)

Пример. В группе 10 студентов. Вероятность присутствия на занятии каждого из них Р(А)=0.9. Какова вероятность того, что на занятиях будет присутствовать 7 человек?

Решение:

P10(m>7)=P10(8)+P10(9)+P10(10)

P10(8)==0.194

P10(9)= =0.387

P10(10)= =0.349

P10(m>7)=0.194+0.387+0.349=0.932