Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТВ лек1.doc
Скачиваний:
160
Добавлен:
20.05.2015
Размер:
648.7 Кб
Скачать

Классическое определение вероятности

Это определение используется, когда число возможных исходов опыта конечно и каждый исход равновозможен (например, при подбрасывании игральной кости).

Пусть W состоит из n равновозможных в данном опыте элементарных событий, т.е. Р(wi)=р, где wi – элементарное событие, . Элементарные события несовместны и образуют полную группу событий, поэтому = W и Р()==np; P(W)=1, откуда.

Вероятность любого события А, которому соответствует в пространстве элементарных событий некоторое подмножество А, содержащее nA исходов, определится следующим образом: А={wi}, . Тогда

, т.е.

(1)

Это классическое определение вероятности.

Вероятность некоторого события А есть отношение числа исходов nA, благоприятствующих наступлению события А, к общему числу возможных исходов n.

Классическое определение вероятности удовлетворяет аксиомам Колмогорова:

1. ;

2. ;

3. Если А и В несовместны и они имеют nA и nB благоприятствующих исходов соответственно, то .

Итак, классическое определение вероятности является частным случаем аксиоматического определения. Для подсчета числа исходов n и nA используют комбинаторику.

При этом необходимо, чтобы обязательно выполнялись условия применимости классического определения: конечное число равновозможных исходов в опыте.

Пример 1: В урне находится m белых шаров и k красных. Из урны наугад вынимают один шар. Найти вероятность того, что вынут белый шар. А={вынут белый шар}.

Решение: Общее число равновозможных исходов опыта n=m+k. Число исходов, благоприятствующих А, nA=m ,

Пример 2: Одновременно подбрасывается две монеты. Найти вероятность события А={хотя бы на одной монете выпадет герб}.

Решение: Кажется, что в опыте три возможных исхода: {два герба}, {две решки}, {герб и решка}. Однако, эти события не равновозможны: последнее вдвое вероятнее первых двух, так как герб и решка могут появиться на разных монетах. Равновозможные исходы: {г,г}, {р,р}, {г,р}, {р,г}, n=4. Исходы приводящие к событию А: {г,г}, {г,р}, {р,г} nA=3,

Р(А)=0.75

Лекция № 3

Геометрическое определение вероятности

Это определение используется, когда опыт имеет несчетное множество равновозможных исходов. В этом случае пространство элементарных событий можно представить в виде некоторой области G. Каждая точка этой области соответствует элементарному событию. Попадание «наугад» брошенной точки в любое место области G равновозможно. Если некоторому событию А соответствуют точки, составляющие некоторую область С внутри G, то

(2),

где mes G - мера области G (под мерой понимается длина, площадь, объем и т.п.).

Геометрическое определение вероятности удовлетворяет аксиомам Колмогорова и является частным случаем аксиоматического определения.

Пример: Два лица X и Y условились встретиться между 12 и 13 часами. Пришедший первым ждет другого 20 минут, после чего уходит. Какова вероятность того, что они встретятся, если моменты их прихода независимы и равновозможны в течении часа.

Решение: Пусть x и y - моменты прихода X и Y

соответственно относительно 12 часов, y

т.е. хÎ[0,60], уÎ[0,60]. Всё пространство

элементарных равновозможных исходов можно60

представить в виде внутренних точек квадрата G G

(см. рис.). Событие А={встреча состоялась} С

произойдет, если |x-y|£20

Точки, соответствующие этому событию 0 20 60 х

образуют заштрихованную область С