
- •Содержание дисциплины
- •Тема 1. Краткие сведения из теории чисел
- •2. Наибольший общий делитель (нод). Алгоритм Евклида.
- •4.Взаимно простые числа. Наименьшее общее кратное (нок).
- •5. Простые и составные числа. Основная теорема арифметики.
- •7. Целые систематические числа.
- •8. Конечные и бесконечные десятичные дроби.
- •10. Решение уравненияв целых числах для целых чисел.
- •11. Признаки делимости.
- •Тема 2. Краткие сведения из алгебры многочленов
- •4. Деление с остатком в . Схема Горнера.
- •5. Наибольший общий делитель. Взаимная простота и неприводимость.
- •6. Многочлены над полем комплексных чисел .
- •7. Многочлены над полем действительных чисел.
- •8. Многочлены над полем рациональных чисел .
- •9. Нахождение рациональных корней многочленов с рациональными коэффициентами.
- •10. Освобождение от алгебраической иррациональности в знаменателе.
- •11. Симметрические многочлены и их применение.
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
Вариант 6
1.Решите уравнения в целых числах:
а)
б)
2. Найдите НОД(a,b) и линейно выразите его черезaиbс целыми коэффициентами, еслиa=1656,b=1495.
3. Докажите, что для любых целых чисел
,
если
делится на 29, то и
делится на 29.
4. Решите систему в натуральных числах:
5. Сложите дроби, приведя их к наименьшему
общему знаменателю:
6. Сформулируйте и докажите признак делимости на mв десятичной системе счисления. Будет ли числоаделиться наm, еслиm=12,а=7243656?
7. Докажите, что следующие числа не
могут быть простыми одновременно:
.
8. Найдите все возможные цифры xиyтакие, чтоделится на 45.
9. Докажите иррациональность
действительного числа
,
если
.
10. Найдите все натуральные числа
такие, что:
а)
-
различные простые числа;
б)
делится на 12 и
.
11. Переведите из одной системы счисления
в другую:
в семеричную.
12. Найдите остаток от деления
на
и выполните действия в указанной системе
счисления
.
13. Представьте следующие бесконечные десятичные дроби в виде обыкновенных несократимых дробей: а) 0,(61); б) 0,31(25).
14. Найдите каноническую форму записи натуральных чисел aиb, еслиa=4789,b=54653.
15. Укажите общую формулу целых чисел n,
для которых сократима дробь.
16. Найдите длину предпериода десятичной
дроби, в которую обращается обыкновенная
дробь
17. Решите уравнения в целых числах а)
;
б)
.
18. Найдётся ли на прямой 9х-24у=17 хотя бы одна точка с целочисленными координатами?
19. Решите в целых числах уравнение x+y=xy.
20. Целое число nпри делении на 2 даёт остаток 1, при делении на 3 – остаток 2. Какой остаток даётnпри делении на 6?
21. Докажите, что произведение трёх последовательных целых чисел делится на 6.
22. Известно, что целое число 2n+1 - точный квадрат. Докажите, чтоnделится на 4 (n– целое число).
23. Найдите трёхзначное число, которое равно квадрату некоторого двузначного числа и кубу некоторого однозначного.
24. Найдите наименьшее натуральное число, которое после умножения на 2 станет квадратом, а после умножения на 3 – кубом некоторых натуральных чисел.
25. Найдите все простые числа pиq такие, чтоp2-2q2=1.
26. Произведение числа 21 на некоторое натуральное четырёхзначное число – точный куб. Найдите это четырёхзначное число.
27. Докажите, что число, записанное тридцатью единицами и каким угодно количеством нулей, не является точным квадратом.
28. При каком условии
делится на
?
29.Разделите
на
при а)
и б)
.
30. Вычислите
,
если
и
.
31. Многочлен
разложите по степеням
.
32. Разложите на множители с целыми
коэффициентами многочлен
.
33. Найдите,
если
- корни уравнения
,
удовлетворяющие соотношению
.
34. Решите уравнение
методом Кардано.
35. Освободитесь от алгебраической
иррациональности в знаменателе
.
36. Найдите сумму кубов корней уравнения
.
37. Найдите все рациональные решения
уравнения
38. Решите систему
39. Разложите на множители с целыми
коэффициентами
.
40. Найдите по алгоритму все рациональные
корни многочлена
,
если
Вариант 7
Решите уравнения в целых числах:
а)
б)
2. Найдите НОД(a,b) и линейно выразите его черезaиbс целыми коэффициентами, еслиa=1247,b=1769.
3. Докажите, что для любых целых чисел
,
если
делится на 11, то и
делится на 11.
4. Решите систему в натуральных числах:
5. Сложите дроби, приведя их к наименьшему
общему знаменателю:
6. Сформулируйте и докажите признак делимости на mв десятичной системе счисления. Будет ли числоа делиться наm, еслиm=45,а=23233230?
7. Докажите, что следующие числа не
могут быть простыми одновременно:
8. Найдите все возможные цифры xиyтакие, чтоделится на 30.
9. Докажите иррациональность
действительного числа
,
если
.
10. Найдите все натуральные числа
такие, что:
а)
-
различные простые числа;
б)
делится на 14 и
11. Переведите из одной системы счисления
в другую:
в пятеричную.
12. Найдите остаток от деления
на
и выполните действия в указанной системе
счисления
.
13. Представьте следующие бесконечные десятичные дроби в виде обыкновенных несократимых дробей: а) 0,(354); б) 0,121(6).
14. Найдите каноническую форму записи натуральных чисел aиb, еслиa=5851,b=38657.
15. Укажите общую формулу целых чисел n,
для которых сократима дробь.
16. Найдите длину предпериода десятичной
дроби, в которую обращается обыкновенная
дробь
.
17. Решите уравнения в целых числах а);
б)
.
18. Найдётся ли на прямой 7х-49у=27 хотя бы одна точка с целочисленными координатами?
19. Решите в целых числах уравнение x+y=xy.
20. Целое число nпри делении на 2 даёт остаток 1, при делении на 3 – остаток 2. Какой остаток даётnпри делении на 6?
21. Докажите, что произведение трёх последовательных целых чисел делится на 6.
22. Известно, что целое число 2n+1 - точный квадрат. Докажите, чтоnделится на 4 (n– целое число).
23. Найдите трёхзначное число, которое равно квадрату некоторого двузначного числа и кубу некоторого однозначного.
24. Найдите наименьшее натуральное число, которое после умножения на 2 станет квадратом, а после умножения на 3 – кубом некоторых натуральных чисел.
25. Найдите все простые числа pиqтакие, чтоp2-2q2=1.
26. Произведение числа 21 на некоторое натуральное четырёхзначное число – точный куб. Найдите это четырёхзначное число.
27. Докажите, что число, записанное тридцатью единицами и каким угодно количеством нулей, не является точным квадратом.
28. При каком условии
делится на
?
29.Разделите
на
при а)
и б)
.
30. Вычислите
,
если
и
.
31. Многочлен разложите по степеням
.
32. Разложите на множители с целыми
коэффициентами многочлен
.
33. Найдите
если
- корни уравнения
удовлетворяют соотношению
.
34. Решите уравнение
методом Кардано.
35. Освободитесь от алгебраической
иррациональности в знаменателе
.
36. Найдите сумму кубов корней уравнения
.
37. Найдите все рациональные решения
уравнения
38. Решите систему
39. Разложите на множители с целыми
коэффициентами
.
40. Найдите по алгоритму все рациональные
корни многочлена
,
если