Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Understanding the Human Machine - A Primer for Bioengineering - Max E. Valentinuzzi

.pdf
Скачиваний:
171
Добавлен:
10.08.2013
Размер:
2.68 Mб
Скачать

388

International Federation for Medical and Biological Engineering, 3

interstitial fluid, 54 intracellular fluid, 54

Intracrine secretion, 161 intraventricular pressure, 260 inverse stretch reflex, 215 ionic channels, 65

Islets of Langerhans, 182 Isolation, 343

J

jet-lag, 194 Johnson noise, 340

K

Kirchhoff, Gustav Robert, 131

Koestler, 8

Kouwenhoven, William, 7

Krogh, August, 108

Kussmaul, Adolf, 121

L

Lapicque, Louis, 63 Laplace, Pierre Simon, 24 Laplace’s Law, 24, 25 latency, 57

Laws of the heart, 23 lead vector, 94

left atrium, 18 left ventricle, 17 LH pulses, 173 LHRH, 172 linear system, 359

Understanding the Human Machine

Linearity, 363 Lissajous patterns, 43 loop, 338

loop of Henle, 127 LTH, 172 luminance, 275

M

Magendie, François, 202 magnetic permeability, 244 Magnetic Resonance Imaging,

276

Magnetobiology, 242 magnetocardiogram, 244 magnetoencephalogram, 244,

246

magnetomyogram, 244, 246 Mathematical Biology, 358 Maxwell, James Clerk, 132 Méchain, Pierre, 4

medial cerebrum, 203

Medical Engineering, 2 medulla oblongata, 204 MEL, 105

melatonin, 193 mesencephalon, 203 metathalamus, 203 meter, 4 Microperfusion, 129 Micropuncture, 128 MIL, 105

Mirowski, Michael, 7 mitochondria, 223 mobility, 67 murmurs, 260 muscles spindle, 215

Index

Muscular System, 211 musculoskeletal system, 211 myasthenia gravis, 214, 218 myoneural junction, 213

N

NEL, 105 neopallium, 203 nephron, 128 Nernst equation, 66

Nervous System, 198

Neurohypophysis, 164 neuromuscular junction, 213 Neuromuscular Juntion, 212 neutrality principle, 59 NIL, 105

Noble’s cycle, 76 Noise, 326, 340 non-linear system, 360 non-linearity, 322 noradrenaline, 206, 208

norepinephrine, 206, 208 nuclear envelope, 223

nuclear magnetic resonance, 272 nucleolus, 222

nucleus accumbens septi, 204 Nyquist, H., 273

O

Objectives, 4, 11 Offsets, 325

olfactory tubercle, 204 Oocyte, 234 Optimality, 365 organelles, 221 orthopnea, 116

389

osmoreceptors, 177 Osmosis, 136

Osmotic exchanger, 143

P

pacemaker, 78, 79

Paracrine secretion, 161 parasympathetic, 205 Parkinson, 338 periheral resistance, 17

peritubular capillaries, 128 phase diagrams, 266 phase distortion, 298 phonocardiogram, 257 Phonocardiography, 262 phrenic nerves, 103 piamater, 209

Pineal Gland, 163 plasma membrane, 221 plasmacrit, 55 pneumothorax, 112 Poiseuille’s Law, 17, 21

Poisson distribution, 38 polarization elements, 286 pontine protuberance, 204 popcorn noise, 340 portal blood, 182

positive inotropic effect, 23 Positron Emission Tomography,

276

posterior cerebrum, 203 potassium equilibrium potential,

66 proencephalon, 203 prokaryotes, 221

prokaryotes cells, 221

390

Propagation, 70

proximal convoluted tubule, 127 PTH, 180

Pulmonary Circulation, 115 pulmonary perfusion, 116 pulmonary valve, 18 Purkinje, Jan Evagelista, 74 putamen, 204

PV-loop, 42, 46 pyramidal tract, 199

Q

qualitative stage, 3 Quantification Process, 3 quantitative stages, 3 quantization, 350

R

radiance, 275 Ranvier, 71

Rapid Eye Movement, 228 Rashevsky, Nicholas, 358 Recording Channel, 9 recovery time, 326

red nucleus, 201 reflectance, 274 regional resistance, 21 relative permittivity, 249 releasing hormones, 165 Renal system, 125

Anatomical features, 126 blood flow, 144 Countercurrent

multiplication, 140 Filtration, 132 osmosis, 136

Understanding the Human Machine

processes, 130 Reabsorption, 134 secreted load, 133 Secretion, 133

renin, 188 Renin-Angiotensin-

Cardionatrine System, 163 repolarization, 65 resistivity, 249

resistor’s pairing, 313 Respiration

Alveolar ventilation, 108 capacities and volumes, 104 Compliance, 112

dead space, 106 impedance change, 250 mechanisms, 102 muscles, 102 pressures, 109

Rate, 106 variables, 106

Ventilation, 106 Respiratory Control, 119 Reticular Activating System,

204

reticular formation, 201 retinohypotalamic tract, 192 Reynolds number, 256 rhomboencephalon, 203 Rhythmic arrhythmias, 96 right atrium, 18 rinhoencephalon, 203 RNA, 191, 222

S

Saint Mathesis, 1

Index

saltatory conduction, 72 saturation, 275 Schmitt, Otto, 308

Schottky noise, 340 Schottky, Walter, 341 secretin, 151

Secretion, 150, 160 sensors, 279 sensory tract, 199 serotonin, 208 Seven Lamps, 1 Shelley, Percy, 6

Shockley, William, 308 shot noise, 340

sinus arrhythmia, 95 skeleton, 211 sodium current, 65

sodium equilibrium potential, 66

sodium-potassium pump, 61 soma, 199, 208 Somatostatin, 175 somatotropin, 174

spinal cord, 199 Stability, 364 Starling’s Law, 24 stethoscope, 257

Stop flow technique, 129 stretch reflex, 215 striae, 73

striated body, 203 stroke volume, 17 subarachnoid cilae, 209 substantia nigra, 201

superconducting quantum interference device, 245

391

swallowing, 157 sympathetic, 205 Synapse, 198, 208

T

tachycardia, 99 Tarchanoff, J, 232 telencephalon, 203 tetanic contraction, 263 thalamus, 203

Theory of Humor, 8 thermic noise, 340 threshold potential, 62 threshold stimulus, 63 Thyroid, 165

tidal volume, 106

Tissue engineering, 368 transducers, 279 transducible property, 296 trephanum, 209

twitch, 263

U

ultrasound imaging, 276

V

van 't Hoff, Jacobus Henricus, 140

vascular beds, 18 Veins, 29

ventricular hypertrophy, 95 Vessels, 29

Visual Evoked Potentials, 230 Volta, Alessandro, 6, 78

392

W

Warburg impedance, 287 Warburg, Emil Daniel, 287 wedge pressure, 115

Wheatstone bridge, 299 white noise, 340

Understanding the Human Machine

Wilson, Frank, 93

Witchery, 5

Withering, Williams, 6

Wollaston, Mary, 6

Y

yawning, 101

List of Figures

Figure 1.1. The recording channel ............................................................

9

Figure 2.1. The organism in block diagram ............................................

14

Figure 2.2. The circulatory system as a hydraulic series circuit .............

17

Figure 2.3. The circulatory system and its principal beds ......................

20

Figure 2.4. Starling’s law of the heart.....................................................

24

Figure 2.5. Laplace’s law........................................................................

26

Figure 2.6. Fick’s principle.....................................................................

31

Figure 2.7. Hydraulic and simplified model ...........................................

33

Figure 2.8. Actual shape of the dilution curve........................................

35

Figure 2.9. Constant infusion method to obtain flow .............................

37

Figure 2.10. Node system to obtain the coronary blood flow or ............

39

Figure 2.11. Intraventricular volume and pressure records.....................

42

Figure 2.12. Intraventricular volume-pressure diagrams ........................

43

Figure 2.13. End-systolic line (or Frank–Starling–Suga–Sagawa line)..

45

Figure 2.14. Aortic pressure and aortic flow ..........................................

48

Figure 2.15. Aortic impedance................................................................

49

Figure 2.16. Body compartments............................................................

53

Figure 2.17. Model of an excitable tissue. ..............................................

55

Figure 2.18. Membrane resting potential ................................................

58

Figure 2.19. Action potential and its boundaries ....................................

60

Figure 2.20. Actual action potential........................................................

61

Figure 2.21. Hodgkin activation cycle....................................................

62

Figure 2.22. Propagation of the action potential.....................................

69

Figure 2.23. Cardiac action potentials ....................................................

71

Figure 2.24. Noble’s activation cycle .....................................................

73

Figure 2.25. Permeabilities as time course events ..................................

75

Figure 2.26. Frog’s heart.........................................................................

76

Figure 2.27. Sinus venosus electrical complex. ......................................

77

Figure 2.28. Sinus venosus electrical complex and other components...

77

Figure 2.29. Full electromechanical correlation of cardiac events .........

78

Figure 2.30. Conduction system and concept of block...........................

81

Figure 2.31. The normal surface ECG ....................................................

82

Figure 2.32. Genesis of the biphasic action potential .............................

84

393

 

394

Understanding the Human Machine

Figure 2.33. Electric analog of the cardiac fiber.....................................

86

Figure 2.34. Einthoven’s electrocardiographic leads..............................

88

Figure 2.35. Sinus venosus-atrial block..................................................

 

93

Figure 2.36. Sinus venosus-atrial block..................................................

 

94

Figure 2.37. Snake’s ECG ......................................................................

 

94

Figure 2.38. Snake’s electrogram ...........................................................

 

95

Figure 2.39. Fibrillation–defibrillation ...................................................

 

96

Figure 2.40. Respiratory system .............................................................

 

99

Figure 2.41. Anteroposterior diameter change......................................

100

Figure 2.42. Intercostal and diaphragmatic components ......................

101

Figure 2.43. Pulmonary capacities and volumes...................................

102

Figure 2.44. Bases for the determination of the dead space..................

104

Figure 2.45. Generation of a subatmospheric pressure .........................

107

Figure 2.46. Intrapleural pressure. ........................................................

 

108

Figure 2.47. Respiratory pressure-volume diagram..............................

111

Figure 2.48. Pulmonary wedge pressure...............................................

 

112

Figure 2.49. Neural control of the respiratory act.................................

116

Figure 2.50. Functional renal unit: the nephron....................................

123

Figure 2.51. Flow diagram of the renal system.....................................

127

Figure 2.52. The three basic renal processes ........................................

 

129

Figure 2.53. Mechanism of countercurrent multiplication....................

137

Figure 2.54. Schematic of the alimentary canal....................................

142

Figure 2.55. Rabbit ileum activity ........................................................

 

144

Figure 2.56. Beating effect from a rabbit ileum sample........................

145

Figure 2.57. Simplified diagram of the splanchnic circulation.............

149

Figure 2.58. Main secretions of the gis.................................................

 

148

Figure 2.59. Hepatic blood flow determination. ...................................

150

Figure 2.60. Mesenteric blood flow regulation.....................................

154

Figure 2.61. Hypothalamus-adenohypophysis-thyroid relationship .....

161

Figure 2.62. Hypothalamus-adenohypophysis-adrenal cortex system..163

Figure 2.63. Hypothalamic-adenohypophyseal-gonads system............

165

Figure 2.64. Growth endocrine system .................................................

 

169

Figure 2.65. The hypothalamic-neurohypophyseal system ..................

171

Figure 2.66. The adrenal medulla system. ............................................

 

172

Figure 2.67. Splanchnic stimulation .....................................................

 

173

Figure 2.68. Calcium regulation system ...............................................

 

175

List of Figures

395

Figure 2.69. Glucose regulation............................................................

177

Figure 2.70. Renin-angiotensin-cardionatrine system ..........................

181

Figure 2.71. Physiological circadian rhythm ........................................

183

Figure 2.72. Higher and spinal centers .................................................

193

Figure 2.73. The stretch and the inverse stretch reflexes......................

208

Figure 2.74. Sites of disease along the motor unit ................................

209

Figure 3.1. Electro-oculogram ..............................................................

220

Figure 3.2. Electroretinogram ...............................................................

221

Figure 3.3. Electrodermogram ..............................................................

225

Figure 3.4. Electrical block to polyspermy in sea urchin eggs .............

226

Figure 3.5. Electromyogram. ................................................................

230

Figure 3.6. Electroencephalogram ........................................................

232

Figure 3.7. EEGs during different cerebral conditions .........................

233

Figure 3.8. Magnetocardiogram............................................................

237

Figure 3.9. Magnetomyogram...............................................................

238

Figure 3.10. Magnetoencephalogram....................................................

239

Figure 3.11. The impedancimetric signal..............................................

240

Figure 3.12. Respiration recorded with impedance ..............................

243

Figure 3.13. Arterial blood pressure .....................................................

244

Figure 3.14. Blood pressure as a time course event..............................

245

Figure 3.15. Set of signals from the CVS .............................................

246

Figure 3.16. Phonocardiograms ............................................................

249

Figure 3.17. First and second heart sounds...........................................

251

Figure 3.18. Systolic murmur ...............................................................

251

Figure 3.19. Skeletal muscle contraction ..............................................

254

Figure 3.20. Cardiograms .....................................................................

255

Figure 4.1. Electrode-electrolyte interface equivalent circuit...............

278

Figure 4.2. Interface reactance Xi vs frequency ....................................

280

Figure 4.3. Roughened platinum wire tip .............................................

281

Figure 4.4. Interface impedance modulus versus applied current.........

283

Figure 4.5. Basic system to measure pH of a solution ..........................

286

Figure 4.6. Interface capacitance Ci growth curves ..............................

287

Figure 4.7. Wheatstone bridge configuration........................................

291

Figure 5.1. Basic operational amplifier: single inverter........................

301

Figure 5.2. Balanced differential amplifier...........................................

303

Figure 5.3. Loading effect of the input impedance of the amplifier. ....

304

396

Understanding the Human Machine

Figure 5.4. Two Op-Amp biological amplifier. ....................................

307

Figure 5.5. Differential amplifier based on three Op-Amp...................

310

Figure 5.6. Transfer function illustrating non-linearity. .......................

315

Figure 5.7. Conductively coupled noise.

320

Figure 5.8. Inductive coupling ..............................................................

321

Figure 5.9. Capacitive coupling, a pathway ............................to noise

322

Figure 5.10. Interference picked up by an . ......................ECG system

324

Figure 5.11. Model to analyze capacitive .............................pathways

325

Figure 5.12. Magnetically coupled noise..............................................

328

Figure 5.13. Ground loops ....................................................................

331

Figure 5.14. Isolation amplifier ............................................................

334

Figure 6.1. Myocardial infarction .........................................................

338

Figure 6.2. Bundle branch block...........................................................

339

Figure 6.3. Concept of sampling...........................................................

341

Author’s Biographical Note

Born in Buenos Aires in 1932, he obtained the Bachelor degree from the National College of Buenos Aires (1950), and graduated as Telecommunications Engineer at the University of Buenos Aires (1956). Later, he earned a Ph.D. in Physiology and Biophysics from Baylor College of Medicine (USA, 1969), where he also became Assistant Professor (1969–73). Professor of Bioengineering and Head of Laboratory (1972–2001) at the Universidad Nacional de Tucumán (UNT) and Career Investigator (1977–2000) of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, where he currently continues under a contract.

Cofounder and first director (1980–7) of the Instituto Superior de Investigaciones Biológicas (INSIBIO). Director of the Master of Bioengineering Program at the UNT (1996-2003). In 1973, he shared the Nightingale Prize of Bioengineering (IFMBE & BES), in 1980 the Houssay Prize of Biology (Sociedad Argentina de Biología) and, in 1985, the Catalina B. de Barón Accesit Prize of Cardiology (CORDIC, Buenos Aires). In 1984, he was awarded the Golden Route Prize in Science (Sociedad de Distribuidores de Diarios, Buenos Aires). The IEEE/EMBS gave him the 1996 Career Achievement Award. He is a Life Fellow Member of the IEEE, Member of the American Physiological Society, the Institution of Physics and Engineering in Biology and Medicine (England), the Sociedad Científica Argentina and the Sociedad Argentina de Bioingeniería. In 1989, he was inducted into the Argentine National Academy of Engineering, in 1990, into the Córdoba Academy of Medical Sciences, and in September 1997, into the International Academy for Medical and Biological Engineering. He authored or coauthored over 90 scientific and technical papers and more than 30 teaching and/or general articles, has collaborated in 8 books and was guest editor to 5 special issues of scientific journals. For different length periods, he lectured at several US and Latin American universities acting, also, in the editorial boards of Medical Progress through Technology (1979–1994) and Medical Engineering & Physics (1989; Associate Editor, 2001-3) and helping, now and then, as referee to other journals. Besides, he was Latin American Representative to IFMBE (1988–1991) and also to IEEE/EMBS (1988–1991). Between1991 and 1994, he was President to the Latin American Regional Council of Biomedical Engineering (CORAL). He has worked in the fields of bioimpedance, cardiovascular system, impedance microbiology, fibrillationdefibrillation, numerical deconvolution and biomedical engineering education. Max loves his students, likes children, animals and music (plays piano). He enjoys a simple outdoors life. Being is much better than having.