Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Metodichka_po_ostatochnym_znaniam (1).doc
Скачиваний:
7
Добавлен:
14.05.2015
Размер:
6.02 Mб
Скачать

1. Прибавь 1

2. Умножь на 2.

Первая из них увеличивает число на экране на 1, вторая – удваивает его.

Программа для Калькулятора – это последовательность команд. Сколько различных чисел можно получить из числа 2 с помощью программы, которая содержит ровно 4 команд?

Решение (1 способ, построение полного графа решения):

  1. будем строить дерево решений следующим образом: выясним, какое число можно получить из начального значения 1 за 1 шаг:

  1. теперь посмотрим, что удается получить за 2 шага:

в отличие от предыдущей задачи, здесь порядок выполнения операций влияет на результат, поэтому пока все числа получаются разные

  1. делаем 3-й шаг, получаем 8 разных чисел:

  1. на 4-ом шаге рассматриваем все возможные программы из 4-х команд, получаем числа

6, 10, 9, 16, 8, 14, 13, 24, 7, 12, 11, 20,10, 18, 17, 32

  1. здесь всего 16 чисел, но одно из них (10) повторяется 2 раза, а остальные встречаются по 1 разу, поэтому получаем 15 различных чисел

  2. Ответ: 15.

Ещё пример задания (ege.Yandex.Ru):

У исполнителя Калькулятор две команды:

1. Прибавь 6

2. Вычти 3.

Первая из них увеличивает число на экране на 6, вторая – уменьшает на 3. Если в ходе вычислений появляется отрицательное число, он выходит из строя и стирает написанное на экране.

Программа для Калькулятора – это последовательность команд. Сколько различных чисел можно получить из числа 1 с помощью программы, которая содержит ровно 10 команд?

Решение:

  1. особенность этой задачи – у дополнении к условию: «Если в ходе вычислений появляется отрицательное число, он выходит из строя и стирает написанное на экране»

  2. сначала решим задачу без этого ограничения; поскольку две команды 1 и 2 можно переставлять (последовательное применение команд 1 и 2 дает тот же результат, что и последовательное применение команд 2 и 1), количество различных чисел, которые можно получить с помощью программы из N = 10 команд равно N+1 = 11 (см. разборы задач, приведенные выше)

  3. проблема в том, что из этих 11 чисел нужно выбросить все отрицательные, так как при появлении отрицательного числа исполнитель выходит из строя

  4. минимальное число получается, если применить к начальному числу 10 команд 2:

1 – 10·3 = –29

  1. соседние числа в дереве (см. выше) отличаются на 6 – (–3) = 9, поэтому эти 11 чисел

–29 –20 –11 –2 7 16 25 34 43 52 61

  1. из них только 7 чисел положительные

  2. Ответ: 7.

Решение (2 способ):

  1. заметим, что поскольку две команды 1 и 2 можно переставлять (последовательное применение команд 1 и 2 дает тот же результат, что и последовательное применение команд 2 и 1), количество различных чисел, которые можно получить с помощью программы из N = 10 команд равно N+1 = 11 (см. разборы задач, приведенные выше)

  2. разница между соседними числами равна (+6)-(-3)=9(команды «+6» и «-3»)

  3. начальное число – 1, наибольшее число можно получить, применив 10 команд увеличения на 6; получается число

1 + 10·6 = 61

  1. строим ряд чисел – арифметическую прогрессию с разностью (–9):

61 52 43 34 25 16 7 …

все остальные значения отрицательные

  1. таким образом, можно получить только 7 положительных чисел

  2. это значение можно посчитать сразу, не выписывая все числа; ответим на вопрос «Сколько раз можно отнять 9 от числа 61, чтобы получить первое отрицательное число» – получим 7, так как 61 – 9·7 = –2

  3. Ответ: 7.

Решение (3 способ, неравенство, А.А. Серокурова, лицей №6, г. Тольятти):

  1. по условию программа содержит только операции сложения («+6») и вычитания («-3»), которые можно переставлять, не меняя результат

  2. поэтому число, получаемое в результате выполнения некоторой программы из числа 1, можно представить в виде

где – количество команд «+6», а– количество команд «-3»

  1. поскольку по условию всего в программе 10 команд, получаем, что дает

  1. нам требуется определить, сколько неотрицательных чисел может быть получено таким образом, поэтому получаем неравенство

  1. решая последнее неравенство, получаем

  2. поскольку – целое число, получаем

  3. с другой стороны, количество команд «-3» не может быть меньше нуля, поэтому

  1. очевидно, что в этом диапазоне находятся 7 значений (от 0 до 6 включительно), что позволяет получить 7 различных неотрицательных чисел

  2. Ответ: 7.