Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Zachet_medfizika (1).docx
Скачиваний:
141
Добавлен:
02.05.2015
Размер:
113.83 Кб
Скачать

22.Дифракция света на живых клетках. Измерение размеров эритроцитов методом дифракции света.

Дифракция - огибание светом препятствий. Дифракция тесно связана с явлением интерференции.   Явление дифракции света объясняется: каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны (принцип Гюйгенса - Френеля).

Дифракция происходит в том случае, когда размеры препятствий соизмеримы с длиной волны: L ~ Л.

Дифракционная решетка - оптический прибор, представляющий собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Число штрихов у хороших дифракционных решеток доходит до нескольких тысяч на 1 мм.

Если ширина прозрачной щели (или отражающих полос) а, а ширина непрозрачных промежутков (или рассеивающих свет полос) b, то величина d = а + b называется периодом решетки.

Измерение размеров эритроцитов методом дифракции. Для исследования биологических объектов наиболее часто используется дифракционный метод. Одним из наиболее распространенных объектов дифрактометрического исследования являются красные клетки крови. Ход исследования: Эридифрактометр предназначен для динамического контроля сдвиговой упругости живых эритроцитов (достаточно стандартной пробы крови из пальца) в гидродинамическом контуре, который моделирует круг кровообращения. Суспензию с концентрацией эритроцитов заливают в широкую буферную часть с открытой поверхностью. Через нее же можно вводить свет, добавлять и откачивать кислород, а также применять иные воздействия, например, тестировать реакцию на лекарственный препарат. Измерения проводятся в другой части контура, где луч зондирующего и весьма маломощного (менее 1 мВт) лазера пересекает тонкую оптическую кювету - плоский капилляр. Используется основное свойство дифракции Фраунгофера (в параллельных лучах). Световой пучок, пересекающий плоскость с N случайно расположенными малыми дисками одинакового диаметра, дает такую же систему концентрических колец, как и одиночный диск, только яркость изображения в N раз больше. По нему сразу можно определить диаметр диска. Если диаметры дисков немного различаются (что характерно для эритроцитов!), то кольца немного размываются, и с помощью фотометрирования можно определить распределение по размерам. Когда диски овальные, но в плоскости ориентированы одинаково, дифракционная картина состоит из системы овальных колец, развернутых на 90 градусов.

23. Тормозное рентгеновское излучение. Строение, принцип работы и характеристики рентгеновской трубки.

Тормозное рентгеновское излучение (рентгеновские лучи) с непрерывным энергетическим спектром - коротковолновое электромагнитное (фотонное) излучение. Диапазон частот, 3⋅10^16÷3⋅10^19 Гц, диапазон длин волн 10^-8 ÷ 10^-12 м. Образуется при уменьшении кинетической энергии (торможении, рассеянии) быстрых заряженных частиц, например, при торможении в кулоновском поле ускоренных электронов. Существенно для легких частиц электронов и позитронов. Спектр тормозного излучения непрерывен, максимальная энергия равна начальной энергии частицы.

Рентгеновская трубка - электровакуумный прибор, предназначенный для генерации рентгеновского излучения. Излучающий элемент представляет собой вакуумный сосудс тремяэлектродами:катодом, накал катода ианодом.

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А —анод(иногда называемый антикатодом), С — теплоотвод,Uh —напряжениенакала катода,Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.

Рентгеновские лучи возникают при сильном ускорениизаряженных частиц (тормозное излучение), либо при высокоэнергетических переходах вэлектронных оболочкахатомов (характеристическое излучение). Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлическиекатодианод(ранее называвшийся такжеантикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёттормозного излученияпроисходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутреннихэлектронных оболочекатомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяютсязаконом Мозли:гдеZ — атомный номерэлемента анода,A и B — константы для определённого значения главного квантового числа n электронной оболочки).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]