Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / Физика Нуруллаев часть2.doc
Скачиваний:
289
Добавлен:
27.04.2015
Размер:
5.65 Mб
Скачать

3.3. Сила Ампера

Если магнитное поле действует на одну движущуюся заряженную частицу, то, естественно, оно будет действовать и на поток заряженных частиц, т. е. на электрический ток. Сила, действующая со стороны магнитного поля на проводник с током, называется силой Ампера.

Рассчитаем величину силы Ампера, действующую на элемент тока длины . Эту длину следует выбрать настолько малой, чтобы считать, что поле в области элемента тока однородно. На каждый электрон в проводнике будет действовать сила Лоренца:

,

где  средняя скорость упорядоченного движения электронов,  угол между скоростью и вектором магнитной индукции. Тогда сумма всех сил Лоренца, действующих на электроны элемента тока, или сила Ампера:

.

Число свободных электронов в элементе тока:

,

где  концентрация свободных электронов в проводнике, 1/м3;  объем элемента тока;  площадь поперечного сечения проводника. Тогда:

.

Величина в скобках представляет собой произведение плотности тока на площадь поперечного сечения провода, т. е. равна силе тока (см. уравнение (2.23)). Следовательно, для силы Ампера, действующей на элемент тока, получим:

. (3.6)

Угол можно рассматривать как угол между проводником и вектором магнитной индукции.

Ясно, что направление силы Ампера, так же как и направление силы Лоренца, определяется правилом левой руки: четыре пальца левой руки нужно расположить вдоль тока так, чтобы вектор магнитной индукции входил в ладонь, тогда оттянутый на 900 большой палец укажет направление силы Лоренца. На рис. 3.4 показано применение этого правила (вектор магнитной индукции направлен на нас перпендикулярно плоскости листа).

Выражение для силы Ампера можно переписать в векторном виде:

. (3.7)

Вектор направлен так же, как и сила тока.

Уравнение (3.6) можно использовать для определения единицы измерения магнитного поля в СИ. Расположим проводник перпендикулярно вектору магнитной индукции. Тогда 1 Тесла – это индукция такого магнитного поля, в котором на проводник с током 1 А длиной 1 м действует сила 1 Н.

Для того, чтобы найти результирующую силу, действующую на криволинейный участок проводника с током в магнитном поле, нужно разбить его на малые отрезки, которые можно считать прямолинейными, а поле в области каждого из отрезков однородным, затем определить силы Ампера, действующие на каждый такой отрезок и вычислить векторную сумму полученных сил, т.е. в пределе нужно взять интеграл вдоль всей длины провода :

.

В заключении приведем пример, в котором обсудим важное свойство силы Ампера, действующей на проводник с током произвольной формы в однородном магнитном поле.

Пример 3.2. Определить результирующую силу Ампера, действующую на проводник ADC с током , находящийся в однородном магнитном поле с вектором индукции(рис. 3.5).

Решение. Пусть ,,. Тогда сила, действующая на проводникAD:

.

Сила, действующая на проводник DC:

.

Результирующая сила Ампера, действующая на проводник ADC:

.

Таким образом, результирующая сила равна силе Ампера, которая бы действовала на прямолинейный проводник AC с тем же током , начало которого находится в начале первого отрезка с проводом, а конец – в конце второго отрезка с проводом. Фактически при вычислении силы Ампера ломаный проводникADC можно заменить прямолинейным проводником АС.

Совершенно ясно, что если ломаный проводник будет содержать большее число звеньев, то результат не изменится. При вычислении силы Ампера его заменяют прямолинейным проводником, начало которого находится в начале первого звена, а конец – в конце последнего.

Наконец, если проводник, представляет собой произвольный криволинейный участок провода, то его можно разделить на маленькие (элементарные) кусочки и представить в виде ломаной линии. Отсюда следует важный вывод: сила Ампера, действующая на криволинейный участок проводника с током в однородном магнитном поле, не зависит от формы проводника, а зависит только от расстояния между началом и концом этого участка (т. е. фактически от координат начала и конца участка).

Результаты примера 3.2 позволяют сделать еще один вывод: сила Ампера, действующая на замкнутый проводник с током в однородном магнитном поле, равна нулю.

Замкнутый проводник с током мы будем сокращенно называть рамкой с током или витком с током.