
- •4.1. Первообразная. Простейшие способы интегрирования
- •4.1.1. Первообразная функция
- •Определение 4.1.1.
- •Пример 4.1.1
- •Теорема 4.1.1
- •Доказательство
- •Теорема 4.1.2
- •Доказательство
- •4.1.2. Неопределенный интеграл и его свойства
- •Определение
- •Основные свойства неопределённого интеграла
- •4.1.3. Таблица неопределённых интегралов
- •4.1.4. Интегрирование методом замены переменной
- •Пример 4.1.3
- •Пример 4.1.4
- •Пример 4.1.5
- •Пример 4.1.6
- •Пример 4.1.7
- •4.1.5. Интегрирование по частям
- •Интегралы, берущиеся "по частям"
- •Пример 4.1.8
- •Пример 4.1.9
- •Пример 4.1.10
- •4.2. Интегрирование алгебраических дробей
- •4.2.1. Многочлен в комплексной плоскости. Разложение многочлена с вещественными коэффициентами на множители первой и второй степени
- •Определение 4.2.1
- •Определение 4.2.2
- •Определение 4.2.3
- •Определение 4.2.4
- •Определение 4.2.5
- •Определение 4.2.6
- •Теорема Гаусса (основная теорема алгебры)
- •Теорема 4.2.1
- •Определение 4.2.6
- •Следствие из теоремы Гаусса
- •Теорема 4.2.2
- •Задача 4.2.1
- •Решение
- •4.2.2. Интегрирование простейших рациональных дробей
- •Определение
- •Пример 4.2.1
- •4.2.3. Интегрирование рациональных дробей
- •Пример 4.2.2
- •Тема 4.3. Подстановки, применяемые при интегрировании
- •4.3.1. Интегрирование некоторых иррациональных выражений
- •Пример 4.3.1
- •Пример 4.3.2
- •Пример 4.3.3
- •4.3.2. Интегрирование некоторых классов тригонометрических функций
- •Пример 4.3.5
- •Пример 4.3.6
- •Пример 4.3.7
- •Пример 4.3.8
- •4.4. Определенные интегралы и их приложения
- •4.4.1. Понятие определенного интеграла
- •Определение 4.4.1
- •Геометрический смысл определенного интеграла
- •4.4.3. Интеграл с переменным верхним пределом. Формула Ньютона – Лейбница
- •Теорема 4.4.1. (теорема Барроу)
- •Доказательство
- •Теорема 4.4.2 (Праввило Ньютона – Лейбница)
- •Доказательство
- •Пример 4.4.1
- •4.4.4. Замена переменной в определенном интеграле
- •Теорема 4.4.3
- •Доказательство
- •Пример 4.4.2
- •Теорема 4.4.4
- •Теорема 4.4.5
- •4.4.5. Интегрирование по частям в определенном интеграле
- •Пример 4.4.3
- •4.4.6. Геометрические приложения определенного интеграла
- •Вычисление площадей в декартовых координатах
- •Пример 4.4.4
- •Решение
- •Пример 4.4.5
- •Решение
- •Вычисление площадей, если линии заданы параметрически
- •Площадь сектора в полярных координатах
- •Пример 4.4.6
- •Вычисление объема тела по площадям параллельных сечений
- •Объем тела вращения
- •Пример 4.4.7
- •Решение
- •Длина дуги в декартовых координатах
- •Длина дуги кривой, заданной параметрически
- •Длина дуги кривой в полярных координатах
- •Пример 4.4.7
- •Решение
- •Площадь поверхности тела вращения
- •Пример 4.4.8
- •Решение
- •Приложение определенного интеграла к решению физических и механических задач
- •Пример 4.4.9
- •Решение
- •4.5. Несобственные интегралы
- •Несобственный интеграл с бесконечным пределом интегрирования
- •Пример 4.5.1
- •Решение
- •Теорема 1 (Признак сравнения)
- •Пример 4.5.2
- •Решение
- •Теорема 4.5.2
- •Пример 4.5.3
- •Решение
- •Теорема 4.5.4 (Предельный признак сравнения)
- •Пример 4.5.4
- •Пример 4.5.5
- •Несобственный интеграл от разрывной функции
- •Пример 4.5.6
- •Теорема 4.5.5. (Признак сравнения)
- •Теорема 4.5.6
- •Теорема 4.5.7
- •Пример 4.5.7

40. ∫(f1 (x) + f2 (x))dx = ∫ f1(x)dx + ∫ f2 (x)dx .
Действительно,
(∫ f1(x)dx + ∫ f2 (x)dx)' = (∫ f1(x)dx)' + (∫ f2 (x)dx)' = f1(x) + f2 (x)
и (∫[ f1(x) + f2 (x)]dx)' = f1(x) + f2 (x) .
Таким образом, функции (∫ f1dx + ∫ f2 dx)′ и ∫(f1 + f2 )dx являются первообразными для
функции f1(x) + f2 (x) , т.е. отличаются на произвольную постоянную C . В этом смысле и понимается свойство 40.
4.1.3. Таблица неопределённых интегралов
Из определения неопределенного интеграла получаем следующие формулы, справедливость которых можно проверить непосредственно дифференцированием.
|
1. |
∫xndx = |
|
xn+1 |
|
|
|
+C , где n ≠ −1 |
|
2. |
∫ |
dx |
= ln | x | +C |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n +1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
3. |
∫a |
x |
= |
a x |
+C |
|
|
|
|
|
|
|
|
|
|
|
4. |
∫exdx = ex + C |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
ln a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
5. |
∫sin xdx = −cos x +C |
|
|
|
6. |
∫cos xdx = sin x +C |
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
7. |
∫ |
|
|
|
|
dx |
|
|
= tgx + C |
|
|
|
|
|
|
|
|
|
|
|
8. |
∫ |
|
dx |
|
|
= −ctgx +C |
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
cos2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
sin2 |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
9. |
∫ |
|
|
|
|
dx |
|
= arctg x +C |
|
|
|
10. |
∫ |
|
|
dx |
|
= arcsin x +C |
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
1 + x2 |
|
|
|
|
|
1− x2 |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
11. |
∫sh xdx = ch x +C ∫ch xdx = sh x +C |
12. |
∫ch xdx = sh x +C |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
13. |
∫ |
|
|
|
|
|
dx |
= thx +C |
|
|
|
|
|
|
|
|
|
|
|
14. |
∫ |
|
dx |
|
= −cthx + C |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
ch2 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sh2 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
∫ |
|
|
|
dx |
1 |
ln |
|
x − a |
|
+C |
|
16. |
∫ |
|
|
dx |
|
= arcsin |
|
x |
+ C |
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
15. |
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a2 − x2 |
a |
||||||||||||||||||||||||||||||||
|
|
x2 − a2 |
2a |
x + a |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
∫ |
|
|
dx |
1 |
|
|
|
|
|
|
|
|
x |
|
|
|
18. |
∫ |
|
|
dx |
= ln |
|
x + |
x |
2 |
|
+ a |
|
+C |
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
17. |
|
|
|
= |
|
|
|
arctg |
|
+C |
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
|
a2 + x2 |
a |
a |
|
|
|
|
x2 + a |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
Пример |
19. |
∫tg xdx = −ln |
|
cos x |
|
+C |
|
|
|
20. |
∫ctg xdx = ln |
|
sin x |
|
+C |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
4.1.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1) ∫x4dx = |
|
|
|
x5 |
|
+C . |
|
|
|
|
|
|
2) ∫2x dx = |
2x |
|
+C . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
5 |
|
|
|
|
|
|
|
ln 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАМЕЧАНИЕ
В результате дифференцирования элементарных функций снова получаем элементарные функции, а операция интегрирования может привести к неэлементарным функциям. Доказано, что следующие интегралы не берутся в элементарных функциях:
∫e−x2 dx – интеграл Пуассона;
∫cos x2dx , ∫sin x2dx – интегралы Френеля;
dx
∫ln x – интегральный логарифм;
4