
- •Раздел 1. Линейная алгебра, векторная алгебра, аналитическая геометрия
- •1.1. Матрицы и определители
- •1.1.1. Матрицы. Действия с матрицами
- •Виды квадратных матриц
- •Транспонирование матриц
- •Линейные операции над матрицами
- •Сложение матриц
- •Умножение матрицы на число
- •Задача 1.1.1
- •Решение
- •Умножение матриц
- •Задача 1.1.2
- •Решение
- •1.1.2. Определители
- •Определитель второго порядка
- •Определитель третьего порядка
- •Основные свойства определителей
- •Теорема разложения
- •Задача 1.1.3
- •Решение
- •1.1.3. Обратная матрица
- •Задача 1.1.4
- •Решение
- •1.1.4. Ранг матрицы. Элементарные преобразования в матрице
- •Задача 1.1.5
- •Решение
- •1.2. Системы линейных алгебраических уравнений (СЛАУ)
- •1.2.1. Формулы Крамера
- •Задача 1.2.1
- •Решение
- •1.2.2. Матричный метод
- •Задача 1.2.2
- •Решение
- •Задача 1.2.3
- •Решение
- •Проверка
- •1.2.3. Метод Гаусса
- •Задача 1.2.4
- •Решение
- •Задача 1.2.5
- •Решение
- •1.2.4. Однородные системы
- •Определение 1.2.1
- •Решение
- •1.3. Векторы. Линейное векторное пространство. Линейная зависимость и независимость векторов. Базис и размерность линейного векторного пространства
- •1.3.1. Понятие вектора. Линейное векторное пространство.
- •Определение 1.3.1
- •1.3.2. Линейная зависимость и линейная независимость векторов.
- •Определение 1.3.2
- •Определение 1.3.3
- •Определение 1.3.4
- •Задача 1.3.2
- •Решение
- •Определение 1.3.5
- •Задача 1.3.3
- •Решение
- •1.3.3. Размерность и базис линейного пространства. Линейная зависимость любых четырех векторов в трехмерном пространстве
- •Определение 1.3.6
- •Определение 1.3.7
- •1.3.4. Преобразование координат вектора при переходе к другому базису
- •Определение 1.3.8
- •Определение 1.3.9
- •Определение 1.3.10
- •Определение 1.3.11
- •1.4. Скалярное, векторное и смешанное произведения векторов
- •1.4.1. Скалярное произведение векторов и его свойства
- •Геометрический смысл скалярного произведения
- •Теорема 1.4.1.
- •Доказательство
- •Задача 1.4.1
- •Решение
- •Задача 1.4.2
- •Решение
- •Задачи, использующие скалярное произведение
- •Задача 1.4.3
- •Решение
- •2. Вычисление проекции вектора на направление другого вектора
- •Задача 1.4.4
- •Решение
- •3. Вычисление работы, производимой силой по перемещению материальной точки.
- •Задача 1.4.5
- •Решение
- •1.4.2. Векторное произведение
- •Определение 1.4.1
- •Задача 1.4.6
- •Решение
- •Вычисление векторного произведения в ортонормированном базисе
- •Задачи, использующие векторное произведение.
- •1. Вычисление площадей параллелограмма и треугольника
- •Задача 1.4.7
- •Решение
- •2. Вычисление момента силы
- •Задача 1.4.8
- •Решение
- •3. Определение вектора, ортогонального двум данным
- •Задача 1.4.9
- •Решение
- •1.4.3. Смешанное произведение
- •Определение 1.4.2
- •Свойства смешанного произведения
- •Задачи, использующие смешанное произведение
- •Задача 1.4.10
- •Решение
- •Задача 1.4.11
- •Решение
- •Задача 1.4.12
- •Решение
- •1.5. Кривые на плоскости и поверхности в пространстве
- •1.5.1. Метод координат на плоскости
- •1.5.2. Линии на плоскости
- •Определение
- •Задача 1.5.1
- •Решение
- •1.5.3. Метод координат в пространстве
- •1.5.4. Поверхности в пространстве и их уравнения
- •Задача 1.5.2
- •1.5.5. Линии в пространстве. Параметрическое задание линий на плоскости и в пространстве
- •Задача 1.5.3
- •Задача 1.5.4
- •Кривые на плоскости, заданные параметрическими уравнениями
- •Окружность
- •Эллипс
- •Астроида
- •Циклоида
- •Задача 1.5.5
- •1.5.6. Полярная система координат
- •Задача 1.5.6
- •Решение
- •Задача 1.5.7
- •Решение
- •Задача 1.5.8
- •Решение
- •Задача 1.5.9
- •Решение
- •1.6. Прямая на плоскости. Плоскость и прямая в пространстве
- •1.6.1. Уравнения прямой на плоскости
- •Теорема 1.6.1
- •Доказательство
- •Различные виды уравнений прямой на плоскости
- •Уравнение прямой с угловым коэффициентом
- •Уравнение прямой с нормальным вектором
- •Каноническое уравнение прямой
- •Уравнение прямой в отрезках
- •Нормальное уравнение прямой
- •Угол между прямыми
- •Точка пересечения прямых
- •Расстояние от точки до прямой
- •1.6.2. Уравнения плоскости
- •Теорема 1.6.2.
- •Доказательство
- •Уравнение плоскости с нормальным вектором
- •Задача 1.6.5
- •Решение
- •Задача 1.6.6
- •Решение
- •Задача 1.6.7
- •Решение
- •Задача 1.6.8
- •Решение
- •Задача 1.6.9
- •Решение
- •Теорема 1.6.3
- •Задача 1.6.10
- •Решение
- •Задача 1.6.11
- •Решение
- •Теорема 1.6.4
- •Доказательство
- •Задача 1.6.12
- •Решение
- •Исследование общего уравнения плоскости
- •Определение
- •Задача 1.6.13
- •Решение
- •1.6.3. Уравнения прямой в пространстве
- •Теорема 1.6.5
- •Параметрические и канонические уравнения прямой. Взаимное расположение прямых
- •Параметрические уравнения прямой
- •Канонические уравнения прямой
- •Задача 1.6.14
- •Решение
- •Задача 1.6.15
- •Решение
- •Угол между прямыми
- •Условие перпендикулярности прямых
- •Условие параллельности прямых
- •Условия пересечения прямых в пространстве
- •Задача 1.6.16
- •Решение
- •Приведение общих уравнений прямой к каноническому виду
- •Задача 1.6.17
- •Решение
- •Взаимное расположение прямой и плоскости в пространстве
- •Угол между прямой и плоскостью
- •Условие параллельности прямой и плоскости.
- •Условие перпендикулярности прямой и плоскости.
- •Задача 1.6.18
- •Решение
- •Точка пересечения прямой и плоскости
- •Задача 1.6.19
- •Решение
- •1.7. Кривые и поверхности второго порядка
- •1.7.1. Кривые второго порядка
- •Важные случаи общего уравнения кривой второго порядка
- •Уравнение эллипса
- •Уравнение гиперболы
- •Уравнение параболы
- •Уравнение пары пересекающихся прямых
- •Уравнение пары параллельных или совпадающих прямых
- •Уравнение, определяющее точку
- •Эллипс
- •Теорема 1.7.1
- •Доказательство
- •Исследование формы кривой
- •Гипербола
- •Теорема 1.7.2
- •Доказательство
- •Исследование формы кривой.
- •Определение 1.7.1
- •Теорема 1.7.3
- •Доказательство
- •Парабола
- •Теорема 1.7.4
- •Доказательство
- •Исследование формы кривой
- •Задача 1.7.1
- •Решение
- •Преобразование координат на плоскости. Построение кривых заданных общим уравнением
- •Уравнение эллипса с центром симметрии в точке
- •Уравнение гиперболы с центром симметрии в точке
- •Уравнение параболы с вершиной в точке
- •Задача 1.7.2
- •Решение
- •1.7.2. Поверхности второго порядка
- •Определение 1.7.2
- •Эллипсоид
- •Однополостный гиперболоид
- •Двуполостный гиперболоид
- •Эллиптический параболоид
- •Гиперболический параболоид
- •Конус второго порядка.
- •Цилиндры второго порядка
- •Определение 1.7.3
- •Эллиптический цилиндр
- •Гиперболический и параболический цилиндры
- •Задача 1.3.1
- •Решение

Решение
|
x1 |
x2 x3 |
x4 |
|
|
|
|
(− 2)(−1) |
|
x1 |
x2 x3 |
x4 |
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
1 |
−2 |
1 |
−1 |
|
|
4 |
1 |
|
−2 1 |
−1 |
|
4 |
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
2 −3 |
4 |
1 |
|
2 |
|
|
|
|
|
|
|
0 1 |
2 |
3 |
|
−6 |
|
( |
|
) |
|||||||||
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|||||||||||
|
|
−3 |
−1 |
−4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
1 |
10 |
|
|
|
|
|
|
0 |
|
|
−1 −2 |
−3 |
|
6 |
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
x1 x2 x3 x4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
1 |
0 |
|
5 |
5 |
|
−8 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
1 |
|
2 |
3 |
|
−6 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ранг матрицы системы r(A)=2, ранг расширенной матрицы r(B)=2 число неизвестных n=4. Так как r(A)=r(B)<n, то по теореме Кронекера – Копелли система имеет бесконечно много решений. Найдем все эти решения. Для этого запишем СЛАУ, которая соответствует полученной расширенной матрице:
x |
+5x |
+5x |
= −8 |
x |
= −5x |
−5x |
−8 |
. |
||
|
1 |
3 |
4 |
= −6 |
, |
1 |
3 |
4 |
−6 |
|
|
x |
+ 2x |
+3x |
|
x |
= −2x |
−3x |
|
||
2 |
3 |
4 |
|
2 |
3 |
4 |
|
|
||
Неизвестные x3 и x4 |
являются свободными. |
Их значения задаются произвольно. Число |
свободных неизвестных k определяется по формуле: k=n-r(A). Множество всех решений системы можно записать в виде:
x |
= −5t −5z −8 |
, где t, z R . |
1 |
|
|
x2 = −2t −3z −6 |
|
1.2.4. Однородные системы
Однородная СЛАУ m уравнений с n записывается в виде:
a11x1 + a12 x2 +K+ a1nxn = 0a12x1 + a22x2 +K+ a2nxn = 0
LLLLLLLLLLLLL.
am1x1 + am2 x2 +K+ amnxn = 0
Однородная СЛАУ всегда совместна, она всегда имеет нулевое (тривиальное) решение:
x1 = 0, x2 = 0,K, xn = 0 .
В любой однородной СЛАУ r(A)=r(B)=n, так как расширенная матрица B отличается от матрицы A только нулевым столбцом. При этом:
•если у однородной СЛАУ r(A)=r(B)=n, то она имеет только нулевое решение;
•если у однородной СЛАУ r(A)=r(B)<n, то она имеет ненулевые решения.
Если матрица A однородной системы – квадратная, то однородная система имеет ненулевые решения тогда и только тогда, когда A = 0.
Определение 1.2.1
Пусть однородная СЛАУ имеет k ненулевых решений X1, X2,K, Xk . Эти решения образуют
фундаментальную систему, если любое решение системы X , можно представить в виде:
X = c1 X1 + c2 X 2 +K+ cn X k .
Следует иметь в виду, что число решений в фундаментальной системе k равно числу свободных неизвестных и определяется по формуле: k=n-r(A), где n - число неизвестных, а r(A) ранг матрицы системы.
Задача 1.2.6
13