
- •Раздел 1. Линейная алгебра, векторная алгебра, аналитическая геометрия
- •1.1. Матрицы и определители
- •1.1.1. Матрицы. Действия с матрицами
- •Виды квадратных матриц
- •Транспонирование матриц
- •Линейные операции над матрицами
- •Сложение матриц
- •Умножение матрицы на число
- •Задача 1.1.1
- •Решение
- •Умножение матриц
- •Задача 1.1.2
- •Решение
- •1.1.2. Определители
- •Определитель второго порядка
- •Определитель третьего порядка
- •Основные свойства определителей
- •Теорема разложения
- •Задача 1.1.3
- •Решение
- •1.1.3. Обратная матрица
- •Задача 1.1.4
- •Решение
- •1.1.4. Ранг матрицы. Элементарные преобразования в матрице
- •Задача 1.1.5
- •Решение
- •1.2. Системы линейных алгебраических уравнений (СЛАУ)
- •1.2.1. Формулы Крамера
- •Задача 1.2.1
- •Решение
- •1.2.2. Матричный метод
- •Задача 1.2.2
- •Решение
- •Задача 1.2.3
- •Решение
- •Проверка
- •1.2.3. Метод Гаусса
- •Задача 1.2.4
- •Решение
- •Задача 1.2.5
- •Решение
- •1.2.4. Однородные системы
- •Определение 1.2.1
- •Решение
- •1.3. Векторы. Линейное векторное пространство. Линейная зависимость и независимость векторов. Базис и размерность линейного векторного пространства
- •1.3.1. Понятие вектора. Линейное векторное пространство.
- •Определение 1.3.1
- •1.3.2. Линейная зависимость и линейная независимость векторов.
- •Определение 1.3.2
- •Определение 1.3.3
- •Определение 1.3.4
- •Задача 1.3.2
- •Решение
- •Определение 1.3.5
- •Задача 1.3.3
- •Решение
- •1.3.3. Размерность и базис линейного пространства. Линейная зависимость любых четырех векторов в трехмерном пространстве
- •Определение 1.3.6
- •Определение 1.3.7
- •1.3.4. Преобразование координат вектора при переходе к другому базису
- •Определение 1.3.8
- •Определение 1.3.9
- •Определение 1.3.10
- •Определение 1.3.11
- •1.4. Скалярное, векторное и смешанное произведения векторов
- •1.4.1. Скалярное произведение векторов и его свойства
- •Геометрический смысл скалярного произведения
- •Теорема 1.4.1.
- •Доказательство
- •Задача 1.4.1
- •Решение
- •Задача 1.4.2
- •Решение
- •Задачи, использующие скалярное произведение
- •Задача 1.4.3
- •Решение
- •2. Вычисление проекции вектора на направление другого вектора
- •Задача 1.4.4
- •Решение
- •3. Вычисление работы, производимой силой по перемещению материальной точки.
- •Задача 1.4.5
- •Решение
- •1.4.2. Векторное произведение
- •Определение 1.4.1
- •Задача 1.4.6
- •Решение
- •Вычисление векторного произведения в ортонормированном базисе
- •Задачи, использующие векторное произведение.
- •1. Вычисление площадей параллелограмма и треугольника
- •Задача 1.4.7
- •Решение
- •2. Вычисление момента силы
- •Задача 1.4.8
- •Решение
- •3. Определение вектора, ортогонального двум данным
- •Задача 1.4.9
- •Решение
- •1.4.3. Смешанное произведение
- •Определение 1.4.2
- •Свойства смешанного произведения
- •Задачи, использующие смешанное произведение
- •Задача 1.4.10
- •Решение
- •Задача 1.4.11
- •Решение
- •Задача 1.4.12
- •Решение
- •1.5. Кривые на плоскости и поверхности в пространстве
- •1.5.1. Метод координат на плоскости
- •1.5.2. Линии на плоскости
- •Определение
- •Задача 1.5.1
- •Решение
- •1.5.3. Метод координат в пространстве
- •1.5.4. Поверхности в пространстве и их уравнения
- •Задача 1.5.2
- •1.5.5. Линии в пространстве. Параметрическое задание линий на плоскости и в пространстве
- •Задача 1.5.3
- •Задача 1.5.4
- •Кривые на плоскости, заданные параметрическими уравнениями
- •Окружность
- •Эллипс
- •Астроида
- •Циклоида
- •Задача 1.5.5
- •1.5.6. Полярная система координат
- •Задача 1.5.6
- •Решение
- •Задача 1.5.7
- •Решение
- •Задача 1.5.8
- •Решение
- •Задача 1.5.9
- •Решение
- •1.6. Прямая на плоскости. Плоскость и прямая в пространстве
- •1.6.1. Уравнения прямой на плоскости
- •Теорема 1.6.1
- •Доказательство
- •Различные виды уравнений прямой на плоскости
- •Уравнение прямой с угловым коэффициентом
- •Уравнение прямой с нормальным вектором
- •Каноническое уравнение прямой
- •Уравнение прямой в отрезках
- •Нормальное уравнение прямой
- •Угол между прямыми
- •Точка пересечения прямых
- •Расстояние от точки до прямой
- •1.6.2. Уравнения плоскости
- •Теорема 1.6.2.
- •Доказательство
- •Уравнение плоскости с нормальным вектором
- •Задача 1.6.5
- •Решение
- •Задача 1.6.6
- •Решение
- •Задача 1.6.7
- •Решение
- •Задача 1.6.8
- •Решение
- •Задача 1.6.9
- •Решение
- •Теорема 1.6.3
- •Задача 1.6.10
- •Решение
- •Задача 1.6.11
- •Решение
- •Теорема 1.6.4
- •Доказательство
- •Задача 1.6.12
- •Решение
- •Исследование общего уравнения плоскости
- •Определение
- •Задача 1.6.13
- •Решение
- •1.6.3. Уравнения прямой в пространстве
- •Теорема 1.6.5
- •Параметрические и канонические уравнения прямой. Взаимное расположение прямых
- •Параметрические уравнения прямой
- •Канонические уравнения прямой
- •Задача 1.6.14
- •Решение
- •Задача 1.6.15
- •Решение
- •Угол между прямыми
- •Условие перпендикулярности прямых
- •Условие параллельности прямых
- •Условия пересечения прямых в пространстве
- •Задача 1.6.16
- •Решение
- •Приведение общих уравнений прямой к каноническому виду
- •Задача 1.6.17
- •Решение
- •Взаимное расположение прямой и плоскости в пространстве
- •Угол между прямой и плоскостью
- •Условие параллельности прямой и плоскости.
- •Условие перпендикулярности прямой и плоскости.
- •Задача 1.6.18
- •Решение
- •Точка пересечения прямой и плоскости
- •Задача 1.6.19
- •Решение
- •1.7. Кривые и поверхности второго порядка
- •1.7.1. Кривые второго порядка
- •Важные случаи общего уравнения кривой второго порядка
- •Уравнение эллипса
- •Уравнение гиперболы
- •Уравнение параболы
- •Уравнение пары пересекающихся прямых
- •Уравнение пары параллельных или совпадающих прямых
- •Уравнение, определяющее точку
- •Эллипс
- •Теорема 1.7.1
- •Доказательство
- •Исследование формы кривой
- •Гипербола
- •Теорема 1.7.2
- •Доказательство
- •Исследование формы кривой.
- •Определение 1.7.1
- •Теорема 1.7.3
- •Доказательство
- •Парабола
- •Теорема 1.7.4
- •Доказательство
- •Исследование формы кривой
- •Задача 1.7.1
- •Решение
- •Преобразование координат на плоскости. Построение кривых заданных общим уравнением
- •Уравнение эллипса с центром симметрии в точке
- •Уравнение гиперболы с центром симметрии в точке
- •Уравнение параболы с вершиной в точке
- •Задача 1.7.2
- •Решение
- •1.7.2. Поверхности второго порядка
- •Определение 1.7.2
- •Эллипсоид
- •Однополостный гиперболоид
- •Двуполостный гиперболоид
- •Эллиптический параболоид
- •Гиперболический параболоид
- •Конус второго порядка.
- •Цилиндры второго порядка
- •Определение 1.7.3
- •Эллиптический цилиндр
- •Гиперболический и параболический цилиндры
- •Задача 1.3.1
- •Решение

Задача 1.2.4
x1 + x2 + x3 = 6
− 2x − x + 4x = 8
Решите систему методом Гаусса 1 2 3 .
3x1 + 2x2 − x3 = 4
Решение
1 шаг – формирование первого столбца.
Первую строку, умноженную на (2), прибавим ко второй строке, первую строку, умноженную на (-3) и прибавим к третьей строке расширенной матрицы. После этого все элементы первого столбца матрицы, кроме первого окажутся равными нулю.
|
|
x1 |
x2 |
x |
|
|
|
|
|
|
|
|
|
x |
x |
x |
|
|
|
|
|
|
|
|
3 |
|
|
|
|
(2)(−3) |
|
1 |
2 |
3 |
|
|
|
|
|||
|
1 |
1 |
1 |
|
6 |
|
1 |
1 |
1 |
|
6 |
|
||||||||
|
−2 |
−1 4 |
|
8 |
|
|
|
|
|
0 |
1 |
6 |
|
20 |
|
|||||
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
~ |
|
|
||||||||||||
|
|
|||||||||||||||||||
|
3 |
2 |
−1 |
|
4 |
|
|
|
|
|
0 |
−1 − 4 |
|
−14 |
|
|||||
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
2 шаг – формирование второго столбца.
Вторую строку, умноженную на (-1), прибавим к первой строке, вторую строку прибавим к третьей строке расширенной матрицы. После этого все элементы второго столбца матрицы, кроме диагонального, окажутся равными нулю.
|
x1 x2 x3 |
|
|
|
|
|
|
|
x1 x2 x3 |
|
|
|
||||
|
1 |
1 |
1 |
|
6 |
|
|
|
1 |
0 |
−5 |
|
−14 |
|||
|
|
|
||||||||||||||
|
0 |
1 |
6 |
|
20 |
|
|
|
|
0 |
1 |
6 |
|
20 |
|
|
|
|
|
|
|||||||||||||
~ |
|
|
(1) (−1)~ |
|
|
|||||||||||
|
0 |
−1 |
− 4 |
|
−14 |
|
|
|
|
0 |
0 |
2 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
3 шаг – формирование третьего столбца.
Третью строку разделим на 2, чтобы ее диагональный элемент равнялся нулю. После этого третью строку, умноженную на (-6), прибавим ко второй и третью строку, умноженную на 5, прибавим к первой строке.
|
x1 x2 |
x3 |
|
|
|
|
|
x x x |
|
|
|
|
|
|
|
|
|
x x x |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
1 |
2 |
|
3 |
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
|
|
|
|
1 |
0 |
−5 |
|
−14 |
|
|
1 |
0 |
−5 |
−14 |
|
|
|
|
|
1 |
0 |
0 |
|
1 |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
~ |
0 |
1 |
6 |
|
20 |
|
~ |
|
0 |
1 |
6 |
|
20 |
|
|
|
|
|
|
~ |
0 |
1 |
0 |
|
2 |
|
||
|
|
|
|
|||||||||||||||||||||||||
|
0 |
0 |
2 |
|
6 |
|
: (2) |
|
0 |
0 |
1 |
|
3 |
(− |
|
6)( |
|
5) |
|
0 |
0 |
1 |
|
3 |
|
|||
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение системы, которая соответствует полученной расширенной матрице, очевидно
x1 =1 |
|
x2 |
= 2 . |
x |
= 3 |
3 |
|
Теорема Кронекера – Копелли
Для того, чтобы СЛАУ m уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы ранг матрицы системы r(A) был равен рангу расширенной матрицы r(B).
При этом: если r(A)=r(B)=n, то система имеет единственное решение, если r(A)=r(B)<n, то система имеет бесконечно много решений.
Задача 1.2.5
x1 − 2x2 + x3 − x4 = 4 |
|||
Решите систему уравнений 2x1 −3x2 + 4x3 + x4 = 2 . |
|||
x |
−3x |
− x |
−4x =10 |
1 |
2 |
3 |
4 |
12