
- •В.Ш. Берикашвили э.А. Засовин а.К.Черепанов
- •Оптоэлектронные и радиооптические устройства и системы
- •Монография
- •Москва 2010
- •Введение
- •1. Когерентная оптика и оптическая
- •1.1. Свойства света и его параметры
- •1.2. Оптоэлектронные приборы и устройства
- •1.3. Монохроматичность, когерентность и поляризация света
- •1.3.1. Монохроматическое излучение
- •1.3.2. Когерентность
- •1.3.3. Поляризация излучения
- •1.3.4. Состояние и степень поляризации света
- •2. Геометрическая оптика
- •2.1. Распространение света
- •2.2. Преломление и отражение света на границе двух однородных сред
- •2.3. Особенности распространения оптического излучения в световодах
- •2.3.1. Конструкция волоконного световода
- •2.3.2. Потери излучения в световодах из кварцевых стекол
- •2.4. Взаимодействие света с веществом
- •2.5. Классификация оптоэлектронных приборов и устройств
- •2.6. Пассивные оптические элементы
- •2.6.1. Тонкие линзы и объективы
- •2.6.2. Коллиматоры
- •2.6.3. Зеркальный телескоп
- •2.6.4. Матричное описание оптических систем
- •2.6.5. Аберрации оптических систем
- •2.6.6. Градиентные цилиндрические линзы (гцл)
- •3. Дисперсия, дифракция и интерференция света
- •3.1. Дисперсия света
- •3.2. Дифракция света
- •3.3. Интерференция света и интерферометры
- •3.4. Двухлучевые интерферометры
- •3.4.1. Интерферометр Майкельсона
- •3.4.2. Эшелон Майкельсона
- •3.4.3. Интерферометр Фабри-Перо
- •3.4.4. Интерферометры Фабри-Перо на клине
- •3.4.5. Аналоги интерферометра Фабри-Перо
- •4.6. Интерферометр Маха-Цендера
- •1 ¬ Лазер одномодовый, 2 ¬ расширитель луча, 3, 6 ¬ полупрозрачные пластины, 4, 7 ¬ зеркала, 5 ¬ исследуемая среда, 8 ¬ видеокамера, 9 ¬ интерфейс, 10 ¬ пк
- •3.5. Волоконно-оптические и интегрально-оптические интерферометры
- •3.5.1. Волоконно-оптический интерферометр Фабри-Перо
- •3.5.2. Волоконно-оптический интерферометр Маха-Цендера
- •3.6. Планарные диспергирующие элементы интегральной оптики
- •3.6.1. Планарные волноводы
- •3.6.2. Волноводные диспергирующие элементы
- •3.6.3. Многоканальные волоконно-оптические линии связи
- •4. Электрооптические, магнитооптические и акустооптические устройства
- •4.1. Электрооптические эффекты
- •4.1.1. Поперечный электрооптический эффект Поккельса
- •4.1.2. Продольный электрооптический эффект Поккельса
- •4.1.3. Квадратичный электрооптический эффект Керра
- •4.2. Электрооптические модуляторы света
- •4.2.1.Модуляторы на основе продольного электрооптического эффекта Поккельса
- •4.2.2.Электрооптические модуляторы на основе поперечного электрооптического эффекта Поккельса
- •4.2.3. Электрооптические модуляторы вч и свч
- •4.3. Модуляторы на жидких кристаллах
- •4.3.1. Физические свойства жк
- •4.4. Электрооптический эффект в цтсл-керамике
- •4.5. Магнитооптические эффекты
- •4.6. Акустооптическая модуляция
- •4.6.1. Явление фотоупругости
- •4.6.2. Акустооптические преобразователи
- •4.6.3. Свойства регулярных дифракционных решеток
- •4.6.4. Конструкция и особенности функционирования акустооптического модулятора
- •5. Оптическая обработка информации
- •5.1. Описание оптического сигнала
- •5.2. Методы Фурье-анализа
- •5.2.1. Частотный спектр одномерных сигналов
- •5.2.2. Разложение оптического сигнала в пространственно-временной спектр
- •5.2.2.1. Двумерный оптический сигнал и его информационная структура.
- •5.2.2.2. Дискретизация оптического сигнала
- •5.2.2.3. Дискретное двумерное преобразование Фурье
- •5.3. Аналоговые оптические процессоры
- •5.3.1. Акустооптические процессоры и их применение
- •5.3.2. Оптический процессор двумерного преобразования Фурье
- •5.4. Оптоэлектронные ацп
- •5.4.1. Поляризационные электрооптические ацп
- •5.4.2. Фазовые электрооптические ацп
- •5.4.3. Гибридный электрооптический ацп
- •6. Радиооптические системы
- •6.1. Классификация радиооптических систем
- •6.2. Структурные схемы основных радиооптических систем
- •6.2.1. Система с открытым каналом
- •6.2.2. Компоненты радиооптической системы с открытым каналом
- •6.2.3. Передающие оптические модули
- •6.2.4. Передающие оптические антенны
- •6.2.5. Источники излучения
- •6.2.5.1. Светоизлучающие диоды
- •6.2.5.2. Лазерные диоды
- •6.2.5.3. Лазеры
- •Приемный оптический модуль
- •Приемные антенны
- •6.2.6.2. Компоненты приемного модуля
- •7. Распространение электромагнитных волн в атмосфере
- •7.1. Электрические и метеорологические характеристики атмосферы
- •7.1.1. Молекулярное поглощение радиоволн в парах воды и в кислороде
- •7.1.2. Влияние аэрозолей, дымки, туманов и облаков на ослабление коротковолнового и оптического излучения
- •7.1.3. Ослабление энергии радио и оптического излучения в гидрометеорах
- •7.1.4. Влияние рефракции радиоволн и оптического излучения на связь
- •7.1.5. Потери электромагнитной энергии на преодоление замираний
- •7.1.6. Распространение электромагнитных волн в ионосфере
- •8. Лазерные локационные системы
- •8.1. Схема лазерной локационной системы
- •8.1.1. Многофункциональная система лазерной локации
- •8.1.2. Лазерные системы управления оружием
- •8.1.3. Лазерные системы связи и стыковки космических аппаратов
- •8.1.4. Расчеты параметров оптической связи
- •9. Обзорно–поисковые оптические системы
- •9.1. Системы с последовательным построением отдельных участков изображения
- •9.2. Двухканальные системы
- •9.3. Измерение дальности
- •Импульсные дальномеры
- •9.3.2. Фазовые дальномеры
- •9.4. Измерение скорости в лабораторных условиях
- •9.4.1. Измерение скорости с помощью некогерентного излучения
- •9.4.2. Дифференциально-интерференционный метод измерения скорости
- •9.4.3. Дифракционный метод измерения скорости
- •9.4.4. Измерения скорости в поле движущихся отсчетных точек
- •9.5. Измерение угловых координат
- •9.5.1. Система кодирования без воспроизведения изображения
- •9.5.2. Система кодирования с воспроизведением изображения
- •Заключение
- •Библиографический список
- •Содержание
8.1.1. Многофункциональная система лазерной локации
В лазерной локации применяют в основном те же методы измерения радиальной скорости цели, что и в радиолокации, но точность их выше. Основными методами измерения радиальной скорости (Vr) цели в лазерной локации являются следующие:
–доплеровский, основанный на определении доплеровского сдвига Fд несущей (или поднесущей) частоты отражённого оптического сигнала;
– метод, основанный на дифференцировании дальности до цели r(t ) т.е.
(8.1)
Согласно этому методу производятся отсчёты значений r в два момента времени – t1 и t2: r1= r(t1), r2= r(t2), и вычисляется скорость
,
(8.2)
где
.
Рис. 8.2. Многофункциональная система лазерной локации.
Рассмотрим обобщённую структурную схему ЛЛС, предназначенную для измерения дальности, радиальной скорости и автоматического сопровождения по угловым координатам.
В приведенной схеме, (рис.8.2), можно выделить следующие основные блоки: 1,2,3 – лазерное передающее устройство– ЛПУ (1– лазерный передатчик, 2– коллиматор, 3 -дефлектор), оптико–электронное приёмное устройство – ОЭПУ (4 – блок широкоугольной оптики, 5 –дефлектор, 6– блок узкоугольной оптики, 7–узкоугольный оптический фильтр, 8–фотоприемник), систему первичной обработки данных – 9, 10 – неподвижное основание, 11 и 12 – сглаживающие цепи грубого и точного контуров системы АСН, систему управления и наведения –13, систему автоматического сопровождения цели по направлению – 14, , оптико-механическую систему ручного нацеливания–15.
ЛПУ
служит для создания зондирующего сигнала
с требуемыми характеристиками. Для
формирования ДНА, обеспечивающей
концентрацию излучаемой энергии в узком
пучке, применяется коллиматор–2.
Коллиматор позволяет уменьшить
расходимость пучка в
раз, где
и
–
фокусные расстояния объектива и окуляра.
Для наведения лазерного луча на цель и сканирования используют дефлектор 3 (отклоняюще–сканирующий блок). Наибольшее применение находят механические и пьезоэлектрические сканирующие устройства.
Лазерное излучение модулируется двумя способами: непосредственным управлением лазером (внутренняя модуляция) и с помощью воздействия на выходящее излучение (внешняя модуляция).
Часть отражённого от цели излучения попадает на вход оптоэлектронного приемного устройства (ОЭПУ), включающего в себя приёмную оптическую систему и фотоприёмник. Блок 4 определяет величину телесного угла, внутри которого осуществляется отклонение и сканирование приёмной ДНА. В приёмной оптической антенне применяют устройства фокусирующего и коллимирующего типов. Для снижения уровня внешних помех применяют спектральную фильтрацию за счёт использования интерференционного или поляризационного УОФ.
Фотоприёмник – 8 может быть выполнен на основе прямого фотодетектирования или с помощью оптического гетеродинирования. Усиленные сигналы с выхода приёмника поступают в систему первичной обработки данных 9, где оцениваются координаты цели и их производные.
В системе используется двухконтурная система автоматического сопровождения по направлению, имеющая «грубый» и «точный» контуры слежения. Первый контур осуществляет грубое угловое слежение, перемещая основание (платформу)–10. Второй, «точный» контур, управляет зеркалами, входящими в состав дефлекторов 3 и 5, и служит для коррекции ошибок Δαг и Δβг первого контура. Сигналы второго контура (Δαт и Δβт) поступают на сглаживающие цепи 12 точного контура слежения и далее на элементы блоков 3 и 5.
Для первоначального углового наведения используется оптическая система 15 (теодолит, телескоп), установленная на подвижном основании 10.
ЛЛС
часто сопрягается с системой целеуказания
14 (например, РЛС), обеспечивающей грубое
угловое наведение ЛЛС на цель. В лазерной
локации используются лазеры на СО2
(),
на ионах неодима(Nd)
(
)
и полупроводниковые лазеры (
).