
- •В.Ш. Берикашвили э.А. Засовин а.К.Черепанов
- •Оптоэлектронные и радиооптические устройства и системы
- •Монография
- •Москва 2010
- •Введение
- •1. Когерентная оптика и оптическая
- •1.1. Свойства света и его параметры
- •1.2. Оптоэлектронные приборы и устройства
- •1.3. Монохроматичность, когерентность и поляризация света
- •1.3.1. Монохроматическое излучение
- •1.3.2. Когерентность
- •1.3.3. Поляризация излучения
- •1.3.4. Состояние и степень поляризации света
- •2. Геометрическая оптика
- •2.1. Распространение света
- •2.2. Преломление и отражение света на границе двух однородных сред
- •2.3. Особенности распространения оптического излучения в световодах
- •2.3.1. Конструкция волоконного световода
- •2.3.2. Потери излучения в световодах из кварцевых стекол
- •2.4. Взаимодействие света с веществом
- •2.5. Классификация оптоэлектронных приборов и устройств
- •2.6. Пассивные оптические элементы
- •2.6.1. Тонкие линзы и объективы
- •2.6.2. Коллиматоры
- •2.6.3. Зеркальный телескоп
- •2.6.4. Матричное описание оптических систем
- •2.6.5. Аберрации оптических систем
- •2.6.6. Градиентные цилиндрические линзы (гцл)
- •3. Дисперсия, дифракция и интерференция света
- •3.1. Дисперсия света
- •3.2. Дифракция света
- •3.3. Интерференция света и интерферометры
- •3.4. Двухлучевые интерферометры
- •3.4.1. Интерферометр Майкельсона
- •3.4.2. Эшелон Майкельсона
- •3.4.3. Интерферометр Фабри-Перо
- •3.4.4. Интерферометры Фабри-Перо на клине
- •3.4.5. Аналоги интерферометра Фабри-Перо
- •4.6. Интерферометр Маха-Цендера
- •1 ¬ Лазер одномодовый, 2 ¬ расширитель луча, 3, 6 ¬ полупрозрачные пластины, 4, 7 ¬ зеркала, 5 ¬ исследуемая среда, 8 ¬ видеокамера, 9 ¬ интерфейс, 10 ¬ пк
- •3.5. Волоконно-оптические и интегрально-оптические интерферометры
- •3.5.1. Волоконно-оптический интерферометр Фабри-Перо
- •3.5.2. Волоконно-оптический интерферометр Маха-Цендера
- •3.6. Планарные диспергирующие элементы интегральной оптики
- •3.6.1. Планарные волноводы
- •3.6.2. Волноводные диспергирующие элементы
- •3.6.3. Многоканальные волоконно-оптические линии связи
- •4. Электрооптические, магнитооптические и акустооптические устройства
- •4.1. Электрооптические эффекты
- •4.1.1. Поперечный электрооптический эффект Поккельса
- •4.1.2. Продольный электрооптический эффект Поккельса
- •4.1.3. Квадратичный электрооптический эффект Керра
- •4.2. Электрооптические модуляторы света
- •4.2.1.Модуляторы на основе продольного электрооптического эффекта Поккельса
- •4.2.2.Электрооптические модуляторы на основе поперечного электрооптического эффекта Поккельса
- •4.2.3. Электрооптические модуляторы вч и свч
- •4.3. Модуляторы на жидких кристаллах
- •4.3.1. Физические свойства жк
- •4.4. Электрооптический эффект в цтсл-керамике
- •4.5. Магнитооптические эффекты
- •4.6. Акустооптическая модуляция
- •4.6.1. Явление фотоупругости
- •4.6.2. Акустооптические преобразователи
- •4.6.3. Свойства регулярных дифракционных решеток
- •4.6.4. Конструкция и особенности функционирования акустооптического модулятора
- •5. Оптическая обработка информации
- •5.1. Описание оптического сигнала
- •5.2. Методы Фурье-анализа
- •5.2.1. Частотный спектр одномерных сигналов
- •5.2.2. Разложение оптического сигнала в пространственно-временной спектр
- •5.2.2.1. Двумерный оптический сигнал и его информационная структура.
- •5.2.2.2. Дискретизация оптического сигнала
- •5.2.2.3. Дискретное двумерное преобразование Фурье
- •5.3. Аналоговые оптические процессоры
- •5.3.1. Акустооптические процессоры и их применение
- •5.3.2. Оптический процессор двумерного преобразования Фурье
- •5.4. Оптоэлектронные ацп
- •5.4.1. Поляризационные электрооптические ацп
- •5.4.2. Фазовые электрооптические ацп
- •5.4.3. Гибридный электрооптический ацп
- •6. Радиооптические системы
- •6.1. Классификация радиооптических систем
- •6.2. Структурные схемы основных радиооптических систем
- •6.2.1. Система с открытым каналом
- •6.2.2. Компоненты радиооптической системы с открытым каналом
- •6.2.3. Передающие оптические модули
- •6.2.4. Передающие оптические антенны
- •6.2.5. Источники излучения
- •6.2.5.1. Светоизлучающие диоды
- •6.2.5.2. Лазерные диоды
- •6.2.5.3. Лазеры
- •Приемный оптический модуль
- •Приемные антенны
- •6.2.6.2. Компоненты приемного модуля
- •7. Распространение электромагнитных волн в атмосфере
- •7.1. Электрические и метеорологические характеристики атмосферы
- •7.1.1. Молекулярное поглощение радиоволн в парах воды и в кислороде
- •7.1.2. Влияние аэрозолей, дымки, туманов и облаков на ослабление коротковолнового и оптического излучения
- •7.1.3. Ослабление энергии радио и оптического излучения в гидрометеорах
- •7.1.4. Влияние рефракции радиоволн и оптического излучения на связь
- •7.1.5. Потери электромагнитной энергии на преодоление замираний
- •7.1.6. Распространение электромагнитных волн в ионосфере
- •8. Лазерные локационные системы
- •8.1. Схема лазерной локационной системы
- •8.1.1. Многофункциональная система лазерной локации
- •8.1.2. Лазерные системы управления оружием
- •8.1.3. Лазерные системы связи и стыковки космических аппаратов
- •8.1.4. Расчеты параметров оптической связи
- •9. Обзорно–поисковые оптические системы
- •9.1. Системы с последовательным построением отдельных участков изображения
- •9.2. Двухканальные системы
- •9.3. Измерение дальности
- •Импульсные дальномеры
- •9.3.2. Фазовые дальномеры
- •9.4. Измерение скорости в лабораторных условиях
- •9.4.1. Измерение скорости с помощью некогерентного излучения
- •9.4.2. Дифференциально-интерференционный метод измерения скорости
- •9.4.3. Дифракционный метод измерения скорости
- •9.4.4. Измерения скорости в поле движущихся отсчетных точек
- •9.5. Измерение угловых координат
- •9.5.1. Система кодирования без воспроизведения изображения
- •9.5.2. Система кодирования с воспроизведением изображения
- •Заключение
- •Библиографический список
- •Содержание
4.1.1. Поперечный электрооптический эффект Поккельса
Поперечный линейный электрооптический эффект Поккельса также наблюдается в кристаллах с кубической решеткой. Наиболее сильно он заметен в кристаллах арсенида галия GaAs, сульфита цинка ZnS, силиката висмута Bi12SiO20 германата висмута Bi12GeO20.
Рис. 4.2. Структурная схема испытательного стенда с поперечным электрооптическим модулятором (а) и ориентация осей в кристалле (б)
При воздействии электрического поля на электрооптический кристалл перпендикулярно лучу изменяются показатели преломления света в направлении y :
(4.7)
где n0 – обыкновенный луч, ne – необыкновенный луч.
При этом скорости распространения вертикальной и горизонтальной компонент будут определяться соотношениями:
(4.8)
ДЛП кристалла составит:
.
Разность фаз поляризационных компонент на выходе кристалла (набег фазы) составит
или
,
(4.9)
где d - расстояние между пластинами под напряжением U, L –длина пути в кристалле.
Исходя
из (4.9) можно получить выражение для
полуволнового напряжения, когда
:
.
(4.10)
Фазовую и поляризационную модуляцию можно реализовать, используя линейный электрооптический эффект в следующих кристаллах с кубической решеткой: GaAs – арсенид галия, ZnS – сульфит цинка, Bi12SiO20 – силикат висмута, Bi12GeO20 – германат висмута. С помощью этих веществ выполняют датчики напряжения. В этом случае компоненты тензора упругости имеют значения
,
а индикатриса имеет вид сферы
.
4.1.2. Продольный электрооптический эффект Поккельса
При
подаче продольного напряжения на
кристалл, получим поле с напряжением:
.
Уравнение индикатрисы приобретает
следующий вид:
.
Коэффициенты преломления изменяются следующим образом
(4.11)
При продольном электрическом поле разность фаз поляризационных компонент на выходе кристалла (набег фазы), как и в кристалле КДП, составит:
,
(4.12)
При поперечном поле набег фаз будет:
.
(4.13)
Сдвиг фаз отсутствует за счет естественной анизотропии.
4.1.3. Квадратичный электрооптический эффект Керра
Кристаллы, имеющие центры симметрии, и аморфные вещества обладают квадратичным эффектом (эффект Керра). Наиболее ярко квадратичный электрооптический эффект (ЭО) наблюдается у кубических кристаллов перовскитов ABO3: BaTiO3, KTaO3, SrTiO3, KTaxNb1-xO3 (KTN). Этот эффект имеется также в следующих жидкостях: сероводород, нитробензол.
Уравнение индикатрисы в общем случае имеет вид:
,
(4.14)
где i, j, k – индексы излучения принимают значения от 1 до 3,
слагаемое
описывает линейный ЭО эффект, а –
квадратичный ЭО эффект. Обычно
.
……… (4.15)
Коэффициенты
преломления меняются следующим образом
для перовскитов, если
:
(4.16)
где p - вектор поляризации, g11, g12 компоненты тензора поляризации.
Набег фаз между компонентами выражается так:
,
(4.17)
где L длина.
Согласно
(4.16) разность фаз пропорциональна
квадрату вектора поляризации, т.е.
,
и отношение интенсивности света на
выходе модулятора изменяется по закону:
,
(4.18)
где
- полуволновое напряжение.
Квадратичный эффект позволяет увеличить глубину модуляции за счет напряжения смещения Uсм:
,
(4.19)
где
- рабочее напряжение,
и
- напряжения модуляции и смещения.
Незначительные
изменения
приводят к значительному увеличению
анизотропии кристалла, высокой
эффективности модуляции и к повышению
быстродействия.
Поперечное полуволновое напряжение можно рассчитать по формуле:
.
(4.20)
Эффективность модуляции наибольшая при Uсм > 500 В.
Эффект
Керра зависит и от других параметров.
Например, диэлектрическая проницаемость
перовскитов сильно зависит от температуры,
особенно у точки Кюри
.
Наиболее
сильный эффект Керра у KTN
при
.
При
Uсм
= 300 В
().
Сероуглерод CS, нитробензол C6H5NO2 и аморфин, при подаче напряжения приобретают свойства одноосных кристаллов.
Набег фазы определяется по формуле:
,
(4.21)
где Bk - постоянная Керра.
Для нитробензола набег фазы в 100 раз больше, чем у другой жидкости. Свойства нитробензола: он прозрачен в области от 0,4 до 1,1 мкм, а диэлектрическая проницаемость ε велика.