Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ НЕЙРОФИЗИОЛОГИЯ.docx
Скачиваний:
298
Добавлен:
13.04.2015
Размер:
456.88 Кб
Скачать

24. Гормоны как носители информации

Эндокринологией называется область физиологии, связанная с изучением гормонов.

Функции гормонов

Гормоны - это продукты внутренней секреции, т.е. химические вещества, которые вырабатываются специализированными железами, выде­ляются в кровь и разносятся ею по телу. Гормоны служат хи­мическими носителями информации; достигнув ор­гана-мишени, они оказывают на него специфическое воздействие. Специфичность действия гормонов обеспечивается присутствием в клетках молекул-рецепторов. Рецепторами соответствующего гормо­на обладают только клетки органа-мишени, спо­собные благодаря этому «считывать» химически закодированную информацию. При этом эффекты на разные органы могут отличаться.

Под влиянием гормонов находятся те функции организма, для запуска или регуляции которых требуются минуты или часы. Таким образом, пе­редача гормональной информации осуществляется в десятки раз медленнее, чем нервная передача, позволяющая организму немедленно реагировать на факторы окружающей среды или внутренние функциональные изменения.

Образование гормонов

Гормоны вырабатывают­ся секреторными клетками. Такие клетки либо образуют компактные органы (железы), либо раз­бросаны по одной или в виде скоплений внутри органов, предназначенных для синтеза гормонов. Образовавшиеся гормоны хранятся в гранулах -внутриклеточных органеллах, отделенных от цито­плазмы мембраной. В ответ на специфический стимул гормон высвобождается, мембрана гранулы сли­вается с плазматической мембраной и в месте слияния образуется отверстие, через которое мо­лекулы гормона выбрасываются в межклеточное пространство. Этот процесс называется экзоцитозом. Процесс экзоцитоза гормонов из секреторных клеток подобен высвобождению нейромедиаторов из нервных оконча­ний.

Классификация гормонов по механизмам действия

Все гормоны представляют собой либо белки, либо липиды (жиры).

Главное условие осуществления всех эндокринных функций - это при­сутствие в клетках-мишенях специфических рецепторов, позволяющих клетке реагировать на определенный гормон. При взаимодействии гормона с рецептором, находящимся в цитоплазме, в ядре или на поверхности плазматической мем­браны, образуется гормон-рецепторный комплекс. Существуют два механизма действия гормонов, принципиально различающихся по признаку того, где образуется гормон-рецепторный комплекс - внутри клетки или на ее поверхности.

В результате сочетания деления гормонов по строению, и в зависимости от локализации рецепторов в клет­ках-мишенях, все гормоны можно разделить на три группы:

1. Стероиды (гормоны липидной природы). 

Будучи жирорастворимыми, они легко проникают через клеточную мембрану и взаимодействуют с рецепторами, локализованными внутри клетки, - как правило, в цитоплазме.

2. Белковые и пептидные гормоны. 

Они состоят из аминокислот и по сравнению с гормонами липидной природы имеют более высокую молекулярную массу и менее липофильны, из-за чего с трудом проходят через плазматическую мембрану. Рецепторы этих гормонов находятся на поверхности клеточной мембраны, так что белковые и пептидные гормоны в клетку не проникают.

3. Тиреоидные гормоны (гормоны щитовидной железы) низкомолекулярные, об­разованны двумя аминокислотными остатками, связанными между собой эфирной связью. Эти гормоны легко проникают во все клетки тела и взаимодействуют с рецепторами, локализован­ными в ядре.

Одна и та же клетка может иметь рецепторы всех трех типов, т.е. локализо­ванные в ядре, цитозоле и на поверхности плаз­матической мембраны. Кроме того, в одной и той же клетке могут присутствовать разные рецепторы одного типа; например, на поверхности клеточной мембраны могут находиться рецепторы разных пептидных и/или белковых гормонов. См. рис 1:

Рис. 1. Механизмы действия разных типов гормонов. Три эндо­кринные клетки секретируют в межклеточное простран­ство в непосредственной близости от капилляров гор­моны А, Б и В. Молекулы гормонов диффундируют в кровеносный сосуд и доставляются кровью к клеткам-мишеням, содержащим рецепторы этих гормонов. Гор­мон А взаимодействует с рецептором, находящимся на поверхности плазматической мембраны. Гормон-рецепторный комплекс стимулирует образование вторич­ного посредника, который индуцирует ответ клетки. Гормон Б взаимодействует с рецептором, находящимся в цитоплазме. Образующийся комплекс транслоцируется в ядро и воздействует на геном (например, изменяет синтез ядерной ДНК), что приводит к изменению синте­за белка. Гормон В взаимодействует с рецептором, локализованным в ядре, т.е. действует практически так же, как гормон Б, с той только разницей, что его рецептор исходно локализован в ядре.

Гормон-рецепторный комплекс, образующийся внутри клетки, может непосредственно влиять на экспрессию генетической информации, т.е. сам оказывает действие на геном и в результате на процессы синтеза в клетке (рис.2). Таким об­разом, гормон-рецепторный комплекс может индуцировать или подавлять синтез белка.

25.

ГИПОТАЛАМУС

АТЛАС МИКРОФОТОГРАФИЙ

СТРОМА - каркас или скелет органа, создает условия для функционирования паренхимы  ПАРЕНХИМА - рабочая или функциональная часть органа

Гипоталамус - это отдел промежуточного мозга, его границы по основанию мозга:

передняя - перекрест зрительных нервнов

задняя - сосцевидные тела

боковые - оптические тракты

верхней границей гипоталамуса является таламус, верхняя часть гипоталамуса - это дно третьего желудочка мозга

В рострально-каудальном (передне-заднем) направлении гипоталамус делится на передний, средний и задний отделы, а в сагиттальной плоскости в нем различают боковой,срединный и медиальный отделы.

Гипоталамус образован скоплениями нервных клеток, называемыми ядрами, участками белого вещества, то есть нервными волокнами и нейроглией. В гипоталамусе известно 42 пары ядер. Гипоталамус имеет связи со всеми отделами мозга. Доказано наличие прямых нервных связей между гипоталамусом и ядрами черепно-мозговых нервов, расположенными в продолговатом мозге и мосте.

Гипоталамус контролирует работу эндокринной, иммунной, вегетативной нервной систем, терморегуляцию, обмен глюкозы, кальция и электролитов, инстинктивное поведение (пищевое, половое, материнское, оборонительное, эмоции), артериального давления и т.д.

ГИПОТАЛАМУС И ЭНДОКРИННАЯ СИСТЕМА

Нейронами гипоталамуса синтезируются гормоны (окситоцин, вазопрессин, гипофизотропные гормоны), которые не являются только нейромедиаторами, а выступают в качестве истинных гормонов,то есть транспортируются по крови и имеют периферические эффекты, опосредуемые рецепторами.

Крупноклеточными нейронами супраоптических и прарвентрикуляных ядер переднего гипоталамуса синтезируются гормоны - окситоцин и авзопрессин (антидиуретический гормон), аксоны этих нейронов идут в заднюю долю гипофиза и там заканчиваются аксо-вазальными синапсами.Окситоцин и вазопрессин вместе со специальными транспортными веществами - нейрофизинами транспортируются в заднюю долю гипофиза и там высвобождаются в кровь. Выброс гормонов в кровь происходит при электрическом возбуждении этих нейронов.

Гипоталамус вырабатывает гипофизотропные гормоны, регулирущие деятельность передней доли гипофиза. Нейронами многих ядер гипоталамуса вырабатываются специальные гипофизотропные гормоны - либерины (рилизинг-факторы) и статины, которые регулируют работу передней доли гипофиза. Аксоны этих нейронов идут в область срединного возвышения и там заканчиваются аксо-вазальными синакспам на капиллярах первичной капиллярной сети, то есть на сосудах, которые идут в гипофиз. Поэтому гипофизотропные гормоны очень быстро и в большой концентрации достигают в гипофиза.

Известны следующие либерины и статины:

соматолиберин (стимулирует продукцию гормона роста)

соматостатин (тормозит продукцию гормона роста)

гонадолиберин (люлиберин; стимулирует продукцию гонадотропных гормонов - фолликулостимулирующего и лютеинизирующего)

тиролиберин (стимулирует продукцию тиреотропного гормона)

кортиколиберин (стимулирует продукцию адренокортикотропного гормона)

дофамин (пролактостатин; тормозит продукцию пролактина)

? пролактилиберин (стимулирует продукцию пролактина)

Либерины и статины синтезируются нейронами следующих ядер переднего гипоталамуса: (либерины и статины указаны по номерам, приведенным выше) мелкоклеточная часть супраоптического (4,5) и паравентрикулярного (4, 5) ядер, супрахиазматическое ядро (3),преоптичесоке ядро (3), перивентрикулярное(2,3) среднего гипоталамуса: вентромедиальное ядро (1,6), аркуатное ядро (1,3,6)

Аксоны нейронов всех вышеназванных ядер идут в срединное возвышение и образуют синапсы с капиллярами первичной капиллярной сети.

Гипоталамус не до конца понятными механизмами контролирует работу островков Лангерганса и гомеостаз глюкозы, деятельность гормональных сисетем, обеспечивающих гомеостаз кальция (паратгормон, кальцитонин, витамин D3), натрия (альдостерон, ангиотензин-2, ренин).

Нейроны, аксоны которых оканчиваются в срединном возвышении гипоталамуса находится вне гемато- энцефалического барьера, так как нейроны имеют прямые контакты с сосудами (аксо-вазальные синапсы)

26. В системе эндокринных желез гипофиз занимает особое место, его называют центральной железой внутренней секреции, «королем эндокринной системы». Это связано с тем, что гипофиз за счет своих специальных тропных гормонов регулирует деятельность других, так называемых периферических желез внутренней секреции. Гипофиз, или нижний мозговой придаток, расположенный на вентральной поверхности мозга в основании черепа на дне турецкого седла. У человека этот орган имеет массу 0,6 г. В гипофизе различают две главные части: аденогипофиз и нейрогипофиз, имеющих различное происхождение и строение. Аденогипофиз, или железистая часть, делится в свою очередь на три части: переднюю, туберальну и промежуточную. Он развивается из эпителиального выпячивания (кармана Ратке) крыши ротовой полости. Нейрогипофиз, или мозговая доля, является производным дна воронки промежуточного мозга. В нейрогипофиз включают участок среднего повышения серого холма, стебель воронки и заднюю (нервную) долю гипофиза. Задняя доля гипофиза находится в тесном морфологическом и функциональном связи с гипоталамусом. В нем заканчиваются волокна гипоталамо-гипофизарного тракта, идущего от супраоптического и паравентрикулярного ядер гипоталамуса. В задней и промежуточной долях гипофиза заканчиваются дофаминергические нервные волокна аркуатных ядра. Вопрос о нервная связь между гипоталамусом и аденогипофизом остается дискуссионным. Большинство исследователей считает, что нервные волокна, обнаруженные в передней доле гипофиза, относятся к симпатической нервной системы и попадают в нее вместе с кровеносными сосудами. Аденогипофиз имеет тесную сосудистый связь с гипоталамусом. Система кровеносных сосудов называется портальной. Поток крови в ней имеет нисходящий направление и обеспечивает действие рилизинг-гормонов на тропные гормоны гипофиза. Есть еще одна капиллярная сетка, поток крови в которой имеет восходящее направление и может обеспечивать влияние гипофизарных гормонов на гипоталамус по механизму обратной связи. В аденогипофиза можно выделить следующие группы клеток: ацидозфильни (альфа-клетки), базофильные (бета-клетки), которые называются хромофиламы и хромофобных (гамма-клетки). Отметим, что термины «базофильный», «ацидофильный» основывается исключительно на окраске гранулярных включений цитоплазмы Кроме того, есть недифференцированные клетки. Основными элементами нейрогипофиза является питуициты и нервные клетки. Гормоны аденогипофиза. В аденогипофиза выявлено 7 гормональных веществ, которые являются преимущественно белковыми или пептидными производными. их принято делить на две группы. К первой группе относятся гормоны, влияющие на метаболические процессы и регулируют рост и развитие организма. Это соматотропин, или гормон роста, липопротеины и пролактин. Вторая группа включает тропные гормоны. их основным назначением является регуляция секреции периферических эндокринных желез. К ним относятся: адренокортикотропиы, тиреотропин, гонадотропные (лютеинизирующий и фолликулостимулирующий) гормоны. Гормон роста (соматотропин) участвует в регуляции роста. Это обусловлено его способностью усиливать синтез белка в организме. В наибольшей степени гормон влияет на костную и хрящевую ткани. Под его воздействием происходит рост эпифизарных хрящей в длинных костях конечностей, вследствие чего кости растут в длину. Максимальная секреция гормона роста приходится на ночное время (фаза глубокого сна). Пролактин, или лютеотропный гормон, способствует образованию молока в альвеолах молочной железы женщины. До наступления лактации молочная железа формируется под влиянием женских половых гормонов и эстрогены вызывают рост протоков молочной железы, а прогестерон-развитие ее альвеол. После родов-усиливается секреция гипофизом пролактина и наступает лактация - образование и выделение молока молочными железами. Пролактин имеет также лютеотропный действие, т.е. обеспечивает функционирование желтого тела и образование прогестерона. В мужском организме он стимулирует рост и развитие предстательной железы и семенных пузырьков. Липопротеины, выделенные из передней доли гипофиза, мобилизуют жир из жировых депо, обусловливают липолиз с увеличением содержания свободных жирных кислот в крови. Они являются предшественниками эндорфинов. Тропные гормоны аденогипофиза. Адренокортикотропиы (адренокортикотропный гормон - АКТГ) является стимулятором пучковой и сетчатой ??зон коры надпочечников. Это проявляется усилением окислительного фосфорилирования в корковом веществе, увеличением скорости синтеза белка, активизацией глюкогенеза и усилением образования и секреции кортикостероидов. В надпочечниках при этом уменьшается содержание аскорбиновой кислоты и холестерина, которые используются для синтеза коры гормонов надпочечников. АКТГ вызывает распад белка в организме и тормозит его синтез (в этом является антагонистом соматотропина), снижает проницаемость стенки капилляров (этим объясняется противовоспалительное действие гормона). Под влиянием гормона уменьшаются лимфатические узлы, селезенка и особенно щитовидная железа, снижаются уровне лимфоцитов (лимфопения) и эозинофилов в периферической крови (эозинопения). Секреция гормона зависит от суточных колебаний: вечером содержание его в гипофизе выше, чем утром. Тиреотропин действует исключительно на щитовидную железу, стимулируя ее функцию. Если удалить или травмировать гипофиз у животных, то наступает атрофия щитовидной железы, введение же тиреотропина сопровождается разрастанием ее ткани, гипертрофией железы. Тиреотропин активизирует протеолитические ферменты (катепсин), под влиянием которых происходят гидролиз тиреоглобулина и высвобождение из него гормонов щитовидной железы - тиреотропина и трийодтиронина. Тиреотропин стимулирует также образование белка тиреоглобулина в клетках фолликулов щитовидной железы и поступления его в полость фолликула. Гонадотропины. К ним относятся фолликулостимулирующий (фолитропин) и лютеинизирующий (лютропин) гормоны. Указанным гормонам не свойственна половая специфичность, они как у женщин, так и у мужчин. Всего в организме практически все этапы морфологического развития и функциональной активности половых желез является следствием синергического действия фолитропин и лютропина. Под влиянием фолитропин в яичнике стимулируются рост везикуч лярного фолликула и его оболочек, секреция фолликулярной жидкости. Этот гормон влияет на образование мужских половых клеток - сперматозоонов. Лютропин нужен для роста фолликула яичника на стадиях, предшествующих овуляции, и для собственно овуляции, т.е., для разрыва оболочки созревшего фолликула и выхода из него яйцеклетки, а также для создания на месте фолликула, который лопнул, желтого тела. Лютропин стимулирует образование женских половых гормонов эстрогенов, а у мужчин - мужских половых гормонов андрогенов. В средней части аденогипофиза образуется гормон меланотропин или интермедин. Он влияет на пигментный обмен. Если, например, у лягушки разрушить гипофиз, то через некоторое время у нее станет светлее цвета кожи. Гормоны нейрогипофиза. В клетках нейрогипофиза - питуицитах - накапливаются и приобретают активной формы вазопрессин, или антидиуретический гормон (АДГ), и окситоцин, которые образуются в нейронах супраоптического и паравентрикулярного ядер гипоталамуса и аксонами этих ядер, которые составляют гипоталамо-гипофизарный тракт, поступают в нейрогипофиз и кровь. Вазопрессин выполняет в организме две функции: 1) стимулирующее воздействие гормона на гладкие мышцы артериол (через Vi-рецепторы), что приводит к повышению их тонуса и артериального давления, 2) усиливает реабсорбцию (обратное всасывание) воды из дистальных отделов канальцев почек в кровь, что сопровождается уменьшением продукции мочи в почках (антидиуретического действие гормона - через Уз4 рецепторы). Для прессорного действия требуется большая концентрация гормона. Так, вазопрессин уменьшает мочеотделение и повышает осмотическую концентрацию мочи. Это действие гормона связана главным образом с увеличением проницаемости стенки почечных канальцев и собирательных трубочек для воды. Остается дискуссионным вопрос о механизме изменения проницаемости при действии АДГ. А. Г. Гинецинський (1958) высказал предположение, что АДГ способствует активизации гиалуронидазы клетками почечных канальцев. Этот фермент, деполимеризуючы кислые мукополисахариды межклеточного вещества, увеличивает проницаемость стенки канальцев для воды. Эта гипотеза аргументированная данным гистохимических, биохимических и электронно-микроскопических исследований: было обнаружено расширение межклеточных промежутков при воздействии АДГ. Согласно второй гипотезе, увеличение проницаемости стенки канальцев для воды является следствием увеличения размеров nop в апикальной мембране клетки, через которые и проходит вода. В действии АДГ можно выделить несколько этапов: 1) первичный связь гормона с рецепторами клеток канальцев и собирательных трубок, 2) активация аденилатциклазы, что способствует образованию с АТФ циклического аденозинмонофосфата (цАМФ), 3) активация цАМФ-зависимой протеинкиназы, и наконец, - увеличение проницаемости. Кроме того, вазопрессин способствует повышению памяти, особенно на поздних этапах онтогенеза. Окситоцин избирательно действует на гладкие мышцы матки, усиливая ее сокращение, если она была под влиянием эстрогенов, которые увеличивают чувствительность матки к окситоцину. Во время родов окситоцин стимулирует сокращение матки, обеспечивая нормальное их течение. Считают, что окситоцин увеличивает проницаемость мембран клеток мышц матки для Na + Окситоцин может стимулировать выделение молока из альвеол молочной железы. При этом усиливается, собственно, выделение молока, а не его образования. Секреция контролируется пролактином аденогипофиза. Окситоцин избирательно действует на мио-эпителиальные клетки, окружающие альвеолы, вызывая их сокращение. Сокращаясь, клетки сжимают альвеолы, выталкивая из них молоко. Окситоцин выделяется из нейрогипофиза рефлекторным путем при раздражении рецепторов матки, влагалища. Акт сосания также рефлекторно способствует этому (рефлекс молокоотдачи). Сигнал в ответ на сосание или раздражение рецепторов соска афферентными нервными волокнами достигает спинного мозга, проходит через его ствол, и стимулирует деятельность нейросекреторных клеток ядер переднего гипоталамуса. При этом с нейрогипофиза в кровоток выделяется окситоцин. При гиперфункции аденогипофиза в детском возрасте наблюдается гигантизм, а при гипофункции его - карликовость, или гипофизарным нанизмом. При избыточном образовании сомагостатину у взрослого человека отмечается увеличение тех частей тела, которые еще способны расти. Это пальцы рук и ног, кисти и стопы, нос и нижняя челюсть, язык, органы грудной и брюшной полости. Такое заболевание называется акромегалией. При поражении гипофиза может возникать (преимущественно у женщин) гипофизарная кахексия (болезнь Симмондса). Она проявляется чрезмерным похуданием, появлении признаков преждевременного старения, уменьшением размеров внутренних органов, инволюцией половых органов и т.д.. Это заболевание в большинстве случаев быстро прогрессирует и заканчивается смертью пациента в течение нескольких месяцев. Названы расстройства являются следствием прекращение выработки гормонов аденогипофиза, которые стимулируют деятельность других эндокринных желез. Уменьшение образования вазопресисину в гипоталамо-гипофизарной системе является причиной развития несахарного диабета.