Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ВОПРОСЫ ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

.pdf
Скачиваний:
22
Добавлен:
12.04.2015
Размер:
4.23 Mб
Скачать

31

К оглавлению ↑

ONES (Optical new edge Storage) Oront Burning Kit

Power2Go

Roxio Easy Media Creator (Roxio Creator) (в Германии известна как Roxio WinOnCD) Small CD-Writer

StarBurn

UltraISO

UsefulUtils Discs Studio

JetBee Free\Pro и Complex Evolution (один разработчик) Roxio TOAST — для Mac OS X

PowerLaserExpress 1.0

Software HDD diagnostics and recovery:

Wipe My Disks

HDD Raw Copy Tool

HDD LLF Low Level Format Tool

HDD Capacity Restore Tool

Partition Find and Mount

HDD Wipe Tool

Hard drive firmware update utility (Bootable CD ISO)

Magic Boot Disk v2.0

USBASPI V2.20 MS-DOS Driver

HDDScan

IBM/HITACHI Drive Feature Tool

Victoria

MHDD

Литература: [2], [4], [5].

4. Организация прерываний в ЭВМ

Назначение прерываний.

Современная ЭВМ представляет собой комплекс автономных устройств, каждое из которых выполняет свои функции под управлением местного устройства управления независимо от других устройств машины. Включает устройство в работу центральный процессор. Он передает устройству команду и все необходимые для ее исполнения параметры. После начала работы устройства центральный процессор отключается от него и переходит к обслуживанию других устройств или к выполнению других функций.

Можно считать, что центральный процессор переключает свое внимание с устройства на устройство и с функции на функцию. На что именно обращено внимание ЦП в каждый данный момент, определяется выполняемой им программой.

Во время работы в ЦП поступает (и вырабатывается в нем самом) большое количество различных сигналов. Сигналы, которые выполняемая в ЦП программа способна воспринять, обработать и учесть, составляют поле зрения ЦП или другими словами - входят в зону его внимания.

Для того чтобы ЦП, выполняя свою работу, имел возможность реагировать на события, происходящие вне его зоны внимания, наступления которых он “не ожидает”, существует система прерываний ЭВМ. При отсутствии системы прерываний все заслуживающие внимания события должны находиться в поле зрения процессора, что сильно усложняет программы и требует большой их избыточности. Кроме того, поскольку момент наступления события заранее не известен, процессор в ожидании какого-либо события может находиться длительное время, и чтобы не

32

К оглавлению ↑

пропустить его появления, ЦП не может “отвлекаться” на выполнение какой-либо другой работы. Такой режим работы (режим сканирования ожидаемого события) связан с большими потерями времени ЦП на ожидание.

Кроме сокращения потерь на ожидание, режим прерываний позволяет организовать выполнение такой работы, которую без него реализовать просто невозможно. Например, при появлении неисправностей, нештатных ситуаций режим прерываний позволяет организовать работу по диагностике и автоматическому восстановлению в момент возникновения нештатной ситуации, прервав выполнение основной работы таким образом, чтобы сохранить полученные к этому времени правильные результаты. Тогда как без режима прерываний обратить внимание на наличие неисправности система могла только после окончания выполняемой работы (или ее этапа) и получения неправильного результата.

Прерывание (англ. interrupt) — сигнал, сообщающий процессору о наступлении какоголибо события. При этом выполнение текущей последовательности команд приостанавливается и управление передаётся обработчику прерывания, который реагирует на событие и обслуживает его, после чего возвращает управление в прерванный код

Принцип действия системы прерываний заключается в следующем:

при выполнении программы после каждого рабочего такта микропроцессора изменяются содержимое регистров, счетчиков, состояние отдельных управляющих триггеров, т.е. изменяется состояние процессора. Информация о состоянии процессора лежит в основе многих процедур управления вычислительным процессом. Не вся информация одинаково актуальна, есть существенные элементы, без которых невозможно продолжение работы. Эта информация должна сохраняться при каждом “переключении внимания процессора”.

Совокупность значений наиболее существенных информационных элементов называется вектором состояния или словом состояния процессора (в некоторых случаях она называется словом состояния программы).

Вектор состояния в каждый момент времени должен содержать информацию, достаточную для продолжения выполнения программы или повторного пуска ее с точки, соответствующей моменту формирования данного вектора.

Вектор состояния формируется в соответствующем регистре процессора или в группе регистров, которые могут использоваться и для других целей.

Взависимости от источника возникновения сигнала прерывания делятся на:

асинхронные или внешние (аппаратные) — события, которые исходят от внешних источников (например, периферийных устройств) и могут произойти в любой произвольный момент: сигнал от таймера, сетевой карты или дискового накопителя, нажатие клавиш клавиатуры, движение мыши;

внутренние — события в самом процессоре как результат нарушения каких-то условий при исполнении машинного кода: деление на ноль или переполнение, обращение к недопустимым адресам или недопустимый код операции;

программные (частный случай внутреннего прерывания) — инициируются исполнением специальной инструкции в коде программы. Программные прерывания как правило используются для обращения к функциям встроенного программного обеспечения (firmware), драйверов и операционной системы.

Взависимости от возможности запрета внешние прерывания делятся на:

маскируемые — прерывания, которые можно запрещать установкой соответствующих битов в регистре маскирования прерываний (в x86-процессорах — сбросом флага IF в регистре флагов);

немаскируемые (англ. Non maskable interrupt, NMI) — обрабатываются всегда, независимо от запретов на другие прерывания. К примеру, такое прерывание может вызвать сбой в микросхеме памяти.

33

К оглавлению ↑

Обработчики прерываний обычно пишутся таким образом, чтобы время их обработки было как можно меньшим, поскольку на время их работы могут не обрабатываться другие прерывания, а если их будет много (особенно от одного источника), то они могут теряться.

Обработка прерываний.

После появления сигнала запроса прерывания ЭВМ переходит к выполнению программы - обработчика прерывания. Обработчик выполняет те действия, которые необходимы в связи с возникшей особой ситуацией. Например, такой ситуацией может быть нажатие клавиши на клавиатуре компьютера. Тогда обработчик должен передать код нажатой клавиши из контроллера клавиатуры в процессор и, возможно, проанализировать этот код. По окончании работы обработчика управление передается прерванной программе.

Время реакции - это время между появлением сигнала запроса прерывания и началом выполнения прерывающей программы (обработчика прерывания) в том случае, если данное прерывание разрешено к обслуживанию.

Время реакции зависит от момента, когда процессор определяет факт наличия запроса прерывания. Опрос запросов прерываний может проводиться либо по окончании выполнения очередного этапа команды (например, считывание команды, считывание первого операнда и т.д.), либо после завершения каждой команды программы.

Первый подход обеспечивает более быструю реакцию, но при этом необходимо при переходе к обработчику прерывания сохранять большой объем информации о прерываемой программе, включающей состояние буферных регистров процессора, номера завершившегося этапа и т.д. При возврате из обработчика также необходимо выполнить большой объем работы по восстановлению состояния процессора.

Во втором случае время реакции может быть достаточно большим. Однако при переходе к обработчику прерывания требуется запоминание минимального контекста прерываемой программы (обычно это счетчик команд и регистр флагов). В настоящее время в компьютерах чаще используется распознавание запроса прерывания после завершения очередной команды.

Время реакции определяется для запроса с наивысшим приоритетом.

Глубина прерывания - максимальное число программ, которые могут прерывать друг друга. Глубина прерывания обычно совпадает с числом уровней приоритетов, распознаваемых системой прерываний. Работа системы прерываний при различной глубине прерываний (n) представлена на рис. 14.2. Здесь предполагается, что с увеличением номера запроса прерывания увеличивается его приоритет.

Рис. 14.2. Работа системы прерываний при различной глубине прерываний

Аппаратная реакция на незамаскированное прерывание.

Сначала центральный процессор автоматически запоминает в некоторой области памяти (обычно в текущем стеке) самую необходимую (минимальную) информацию о прерванной

34

К оглавлению ↑

программе. Во многих книгах по архитектуре ЭВМ это называется малым упрятыванием(giau kin) информации о считающейся в данный момент программе, что хорошо отражает смысл такого действия. Для нашего компьютера в стек последовательно записываются значения трёх регистров центрального процессора, это регистр флагов (FLAGS), кодовый сегментный регистр (CS) и счётчик адреса (IP). Как видим, эти действия при минимальном упрятывании похожи на действия при выполнении команды перехода с возвратом call, да и назначение у них одно – обеспечить возможность возврата в прерванное место текущей программы. Из этого следует, что стек должен быть у любой программе, даже если она сама им и не пользуется.

После выполнения минимального упрятывания центральный процессор по определённым правилам находит (вычисляет) адрес оперативной памяти, куда надо передать управление для обработки сигнала прерывания с данным номером. Говорят, что на этом месте оперативной памяти находится программа реакции (процедура обработки прерывания, обработчик) сигнала прерывания с данным номером.

Программная реакция на прерывание.

Действия, выполняемые в режиме с закрытыми прерываниями, обычно называются минимальной программной реакцией на прерывание. Как правило, минимальная программная реакция включает в себя следующие действия.

·Для прерванной программы запоминается вся информация, необходимая для возврата в эту программу. Это все адресуемые регистры (в том числе сегментные регистры и регистры для работы с вещественными числами), а также некоторые системные регистры (последнее сильно зависит от архитектуры конкретного компьютера). Вся эта информация запоминается в специальной области памяти, связанной с прерванной программой, обычно это область памяти называется информационным полем программы или контекстов программы.

·Выполняются самые необходимые действия, связанные с произошедшим событием. Например, если нажата или отпущена клавиша на клавиатуре, то это надо где-то зафиксировать (например, запомнить в очереди введённых с клавиатуры символов). Если этого не сделать на этапе минимальной реакции и открыть прерывания, то процедура-обработчик может быть надолго прервана новым сигналом, который произведёт переключение на какую-то другую процедуруобработчика, за время работы которой уже может быть нажата другая клавиша, а информация о нажатой ранее клавише таким образом будет потеряна.

После выполнения минимальной программной реакции процедура-обработчик включает (разрешает) прерывания . Далее производится полная программная реакция на прерывания, т.е. процедура-обработчик выполняет все необходимые действия, связанные с происшедшим событием. Вообще говоря, допускается, что на этом этапе процедура-обработчик может быть прервана другим сигналом прерывания. В этом случае процедура-обработчик должна при каждом входе в неё резервировать память под свой контекст, где будут запоминаться данные, необходимые для возврата

вэту процедуру.

Закончив полную обработку сигнала прерывания, процедура-обработчик должна вернуть управление программе, прерванной последним сигналом прерывания. Для этого сначала необходимо из контекста прерванной программы восстановить значение всех её регистров (кроме

регистров FLAGS,CS и IP). После этого надо произвести возврат на следующую команду прерванной программы, для чего в нашем компьютере можно использовать специальную команду языка машины

– команду выхода из прерывания iret

Команды прерываний.

INT (тип прерывания)

35

К оглавлению ↑

Команда INT (прерывание) инициирует выполнение процедуры обработки прерывания, определенного в операнде "тип прерывания". Эта команда сохраняет в стеке регистр флагов, очищает флаги TF и IF для запрещения пошагового выполнения и маскируемых прерываний. Флаги сохраняются в том же формате, что и в команде PUSHF. Затем в стеке сохраняется текущее содержимое регистра сегмента кода CS, вычисляется адрес вектора прерывания путем умножения "типа прерывания" на четыре, и второе слово этого вектора помещается в регистр сегмента кода CS. Далее в стеке сохраняется текущее содержимое счетчика команд IP, и в этот регистр записывается первое слово вычисленного вектора прерывания.

int 21h ;Вызов DOS для исполнения

INTO

Команда INTO (прерывание при переполнении) генерирует программное прерывание, если установлен флаг переполнения (OF), в противном случае управление передается следующей команде. Вектор прерывания INTO расположен по адресу 10h. Действие этой команды аналогично действию команды INT.

IRET

Команда IRET (возврат из прерывания) возвращает управление в точку, откуда прерывание было вызвано, заполняя из стека регистры IP, CS и регистр флагов. Команда IRET используется для выхода из процедур обработки как программных, так и аппаратных прерываний.

DAA

Команда DAA (десятичная коррекция сложения) приводит содержимое регистра AL к виду правильного упакованного десятичного числа после предшествующей команды сложения. Команда DAA изменяет значение флагов AF, CF, PF, SF и ZF; содержимое флага OF после выполнения команды DAA не определено.

AAS

Команда AAS (коррекция вычитания неупакованных десятичных чисел) корректирует результат предшествующего вычитания двух правильных неупакованных десятичных чисел. Операндом назначения в команде вычитания должен быть регистр AL. Команда AAS приводит значение в AL к виду правильного неупакованного десятичного числа; старший полубайт при этом обнуляется. Если результат вычитания оказывается меньше 0, выполняется декремент содержимого регистра АН. AAS воздействует на флаги AF и CF; Значение флагов OF, PF, SF и ZF после выполнения команды AAS не определено.

и мн.др.

Литература: [2], [3], [4], [5].

36

К оглавлению ↑

ИНФОРМАТИКА

1. Информатика и информация

Понятие информации.

Информация (от латинского "informatio" - разъяснение, изложение) – это сведения, передаваемые от одного человека к другому устно, письменно или посредством каких-либо условных сигналов или с использованием каких-либо технических средств.

На фундаментальность понятия "информация" указывал еще основоположник кибернетики Норберт Винер. Феномен информации оказался настолько неоднозначным, что по праву считается одной из сложнейших проблем современности. Уже сами попытки подобраться к понятию информации, различные его трактовки в трудах ученых и практиков заставляют задуматься о необычной роли информации в жизни развивающихся систем.

Данные и знания.

Данные – это полученные эмпирическим путем и зафиксированные факты, описывающие источник информации, т.е. характеризующие отдельные его свойства.

Данные (от лат. data) - это представление фактов и идей в формализованном виде, пригодном для передачи и обработки в некотором информационном процессе.

Знания – это закономерности источника информации (понятия, сведения, принципы, связи,

законы), полученные или приобретенные в результате обучения, практической деятельности и профессионального опыта, позволяющие специалистам ставить и решать задачи в этой предметной области.

Вопросом особой значимости является отношение информации и знания, первичности одного к другому.

Данные – это простейший первичный уровень представления информации, который создает условия для получения знаний – высшей, наиболее ценной формы информации.

Измерение информации.

Содержательный подход к измерению информации. Сообщение – информативный поток, который в процессе передачи информации поступает к приемнику. Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными Информация - знания человека ? сообщение должно быть информативно. Если сообщение не информативно, то количество информации с точки зрения человека = 0. (Пример: вузовский учебник по высшей математике содержит знания, но они не доступны 1-класснику)

Алфавитный подход к измерению информации не связывает кол-во информации с содержанием сообщения. Алфавитный подход - объективный подход к измерению информации. Он удобен при использовании технических средств работы с информацией, т.к. не зависит от содержания сообщения. Кол-во информации зависит от объема текста и мощности алфавита. Ограничений на max мощность алфавита нет, но есть достаточный алфавит мощностью 256 символов. Этот алфавит используется для представления текстов в компьютере. Поскольку 256=28, то 1символ несет в тексте 8 бит информации.

Вероятностный подход к измерения информации. Все события происходят с различной вероятностью, но зависимость между вероятностью событий и количеством информации, полученной при совершении того или иного события можно выразить формулой которую в 1948 году предложил Шеннон.

Количество информации – это мера уменьшения неопределенности.

Формула Шеннона:

37

К оглавлению ↑

где I – количество информации; N – количество возможных событий; рi – вероятность i-го события.

Кодирование числовых, текстовых, графических данных.

Кодирование чисел

Кодирование целых чисел производиться через их представление в двоичной системе счисления: именно в этом виде они и помещаются в ячейке. Один бит отводиться при этом для представления знака числа (нулем кодируется знак "плюс", единицей - "минус").

Для кодирования действительных чисел существует специальный формат чисел с плавающей запятой. Число при этом представляется в виде: N = M * qp, где M - мантисса, p - порядок числа N, q - основание системы счисления. Если при этом мантисса M удовлетворяет условию 0,1 <= | M | <= 1 то число N называют нормализованным.

Кодирование текста

Для кодирования букв и других символов, используемых в печатных документах, необходимо закрепить за каждым символом числовой номер – код. В англоязычных странах используются 26 прописных и 26 строчных букв (A … Z, a … z), 9 знаков препинания (. , : ! " ; ? ( ) ), пробел, 10 цифр, 5 знаков арифметических действий (+,-,*, /, ^) и специальные символы (№, %, _, #, $, &, >, <, |, \) – всего чуть больше 100 символов. Таким образом, для кодирования этих символов можно ограничиться максимальным 7-разрядным двоичным числом (от 0 до 1111111, в десятичной системе счисления – от 0 до 127).

Кодирование графической информации

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселами (pixel, от англ. picture element). Код пиксела содержит информации о его цвете.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент векторного изображения – линия. Каждый элемент векторного изображения является объектом, который описывается с помощью математических уравнении. Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Основные структуры данных.

Линейные структуры (списки данных, векторы данных)

Линейные структуры представляют собой списки. Список — это простейшая структура данных, отличающаяся тем, что каждый элемент данных однозначно определяется своим номером в массиве. Проставляя номера на отдельных страницах рассыпанной книги, мы создаем структуру

38

К оглавлению ↑

списка. Обычный журнал посещаемости занятий, например, имеет структуру списка, поскольку все студенты группы зарегистрированы в нем под своими уникальными номерами. Мы называем номера уникальными потому, что в одной группе не могут быть зарегистрированы два студента с одним и тем же номером.

Табличные структуры (таблицы данных, матрицы данных)

Табличные структуры отличаются от списочных тем, что элементы данных определяются адресом ячейки, который состоит не из одного параметра, как в списках, а из нескольких. Для таблицы умножения, например, адрес ячейки определяется номерами строки и столбца. Нужная ячейка находится на их пересечении, а элемент выбирается из ячейки.

Иерархические структуры данных

Нерегулярные данные, которые трудно представить в виде списка или таблицы, часто представляют в виде иерархических структур. В иерархической структуре адрес каждого элемента определяется путем доступа (маршрутом), ведущим от вершины структуры к данному элементу.

Классификация информации.

Информацию можно разделить на виды по различным критериям:

по способу восприятия:

Визуальная — воспринимаемая органами зрения.

Аудиальная — воспринимаемая органами слуха.

Тактильная — воспринимаемая тактильными рецепторами.

Обонятельная — воспринимаемая обонятельными рецепторами.

Вкусовая — воспринимаемая вкусовыми рецепторами.

по форме представления:

Текстовая — передаваемая в виде символов, предназначенных обозначать лексемы языка.

Числовая — в виде цифр и знаков, обозначающих математические действия.

Графическая — в виде изображений, предметов, графиков.

Звуковая — устная или в виде записи и передачи лексем языка аудиальным путём.

по назначению:

Массовая — содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.

Специальная — содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.

Секретная — передаваемая узкому кругу лиц и по закрытым (защищённым) каналам.

Личная (приватная) — набор сведений о какой-либо личности, определяющий социальное положение и типы социальных взаимодействий внутри популяции.

по значению:

Актуальная — информация, ценная в данный момент времени.

Достоверная — информация, полученная без искажений.

Понятная — информация, выраженная на языке, понятном тому, кому она предназначена.

Полная — информация, достаточная для принятия правильного решения или понимания.

Полезная — полезность информации определяется субъектом, получившим информацию в зависимости от объёма возможностей её использования.

по истинности:

истинная

ложная

39

К оглавлению ↑

Методы получения информации.

Методы получения и использования информации можно разделить на три группы, иногда разграничиваемые лишь условно:

1.эмпирические методы или методы получения эмпирической информации (эмпирических данных);

2.теоретические методы или методы получения теоретической информации (построения теорий);

3.эмпирико-теоретические методы (смешанные, полуэмпирические) или методы получения эмпирико-теоретической информации.

Охарактеризуем кратко эмпирические методы:

1.Наблюдение - сбор первичной информации или эмпирических утверждений о системе (в системе).

2.Сравнение - установление общего и различного в исследуемой системе или системах.

3.Измерение - поиск, формулирование эмпирических фактов.

4.Эксперимент - целенаправленное преобразование исследуемой системы (систем) для выявления ее (их) свойств.

Кроме классических форм их реализации, в последнее время используются и такие формы как

опрос, интервью, тестирование и другие.

Охарактеризуем кратко эмпирико-теоретические методы.

1.Абстрагирование - установление общих свойств и сторон объекта (или объектов), замещение объекта или системы ее моделью. Абстракция в математике понимается в двух смыслах: а) абстракция, абстрагирование - метод исследования некоторых явлений, объектов, позволяющий как выделить основные, наиболее важные для исследования свойства, стороны исследуемого объекта или явления, так и игнорировать несущественные и второстепенные; б) абстракция - описание, представление объекта (явления), получаемое с помощью метода абстрагирования; особо важно в информатике такое понятие как абстракция потенциальной осуществимости, которое позволяет нам исследовать конструктивно объекты, системы с потенциальной осуществимостью (т.е. они могли бы быть осуществимы, если бы не было ограничений по ресурсам); используются и абстракция актуальной бесконечности (существования бесконечных, неконструктивных множеств, систем и процессов), а также абстракция отождествления (возможности отождествления любых двух одинаковых букв, символов любого алфавита, объектов, независимо от места их появления в словах, конструкциях, хотя их информационная ценность при этом может быть различна).

2.Анализ - разъединение системы на подсистемы с целью выявления их взаимосвязей.

3.Декомпозиция - разъединение системы на подсистемы с сохранением их взаимосвязей с окружением.

4.Синтез - соединение подсистем в систему с целью выявления их взаимосвязей.

5.Композиция - соединение подсистем в систему с сохранением их взаимосвязей с окружением.

6.Индукция - получение знания о системе по знаниям о подсистемах; индуктивное мышление: распознавание эффективных решений, ситуаций и затем проблем, которые оно может разрешать.

7.Дедукция - получение знания о подсистемах по знаниям о системе; дедуктивное мышление: определение проблемы и затем поиск ситуации, его разрешающей.

8.Эвристики, использование эвристических процедур - получение знания о системе по знаниям о подсистемах системы и наблюдениям, опыту.

9.Моделирование (простое моделирование) и/или использование приборов - получение знания об объекте с помощью модели и/или приборов; моделирование основывается на возможности выделять, описывать и изучать наиболее важные факторы и игнорировать при формальном рассмотрении второстепенные.

10.Исторический метод - поиск знаний о системе путем использования ее предыстории, реально существовавшей или же мыслимой, возможной (виртуальной).

40

К оглавлению ↑

11.Логический метод - метод поиска знаний о системе путем воспроизведения ее некоторых подсистем, связей или элементов в мышлении, в сознании.

12.Макетирование - получение информации по макету объекта или системы, т.е. с помощью представления структурных, функциональных, организационных и технологических подсистем в упрощенном виде, сохраняющем информацию, которая необходима для понимания взаимодействий и связей этих подсистем.

13.Актуализация - получение информации с помощью активизации, инициализации смысла, т.е. переводом из статического (неактуального) состояния в динамическое (актуальное) состояние; при этом все необходимые связи и отношения (открытой) системы с внешней средой должны быть учтены (именно они актуализируют систему).

14.Визуализация - получение информации с помощью наглядного или визуального представления состояний актуализированной системы; визуализация предполагает возможность выполнения в системе операции типа "передвинуть", "повернуть", "укрупнить", "уменьшить", "удалить", "добавить" и т.д. (как по отношению к отдельным элементам, так и к подсистемам системы). Это метод визуального восприятия информации.

Кроме указанных классических форм реализации теоретико-эмпирических методов, в последнее время часто используются и такие формы как мониторинг (система наблюдений и анализа состояний системы), деловые игры и ситуации, экспертные оценки (экспертное оценивание), имитация (подражание), верификация (сопоставление с опытом и заключение об обучении) и другие формы.

Охарактеризуем кратко теоретические методы.

1.Восхождение от абстрактного к конкретному - получение знаний о системе на основе знаний о ее абстрактных проявлениях в сознании, в мышлении.

2.Идеализация - получение знаний о системе или о ее подсистемах путем мысленного конструирования, представления в мышлении систем и/или подсистем, не существующих в действительности.

3.Формализация - получение знаний о системе с помощью знаков или же формул, т.е. языков искусственного происхождения, например, языка математики (или математическое, формальное описание, представление).

4.Аксиоматизация - получение знаний о системе или процессе с помощью некоторых,

специально для этого сформулированных аксиом и правил вывода из этой системы аксиом. Виртуализация - получение знаний о системе созданием особой среды, обстановки, ситуации

(в которую помещается исследуемая система и/или ее исследующий субъект), которую реально, без этой среды, невозможно реализовать и получить соответствующие знания.

Наука информатика.

Информатика – наука о способах получения, накопления, хранения, преобразования, передачи, защиты и использования информации. Она включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования.

Разделы информатики

Теоретическая информатика

Практическая информатика

Техническая информатика

Прикладная информатика

Естественная информатика

Литература: [1], [3], [5].