
- •1. Коллоидная химия. Свойства коллоидных систем. Признаки объектов коллоидной химии.
- •2. Классификация коллоидных систем.
- •5.Очистка коллоидных систем: диализ, ультрафильтрация.
- •7. Поверхностное натяжение. Зависимость поверхностного натяжение от различных факторов. Методы измерения поверхностного натяжения.
- •12. Изотермы адсорбции и поверхностного натяжения растворов пав. Уравнение Шишковского.
- •14. Представления о полимолеку-
- •15. Получение, классификация твердых пористых адсорбентов.
- •16. Понятия о капиллярных явлениях. Теория капиллярной конденсации.
- •20. Избирательное смачивание. Способы определения краевого угла смачивания. Инверсия смачиваемости поверхности.
- •22. Седиментация суспензий и седиментационный анализ дисперсных систем.
- •26. Реологические свойства структурированных жидкообразных и твердообразных систем. Вязкость агрегативно устойчивых дисперсных систем.
- •27 Агрегативная устойчивость дисп сист.Факторы агрег устойчив:
- •30Электрокинетич потенциал.Влияние разл факторов на вел электрокин потенциала.
- •31. Коагуляция дисперсных систем. Факторы, влияющие на электролитную коагуляцию дисперсных систем. Быстрая и медленная коагуляция.
- •39. Пены. Методы получения. Устойчивость и разрушение пен. Практическое значение пен.
- •19Адгезия.Когезия.Смачивание,Краевые углы смачивания и работа адгезии.
20. Избирательное смачивание. Способы определения краевого угла смачивания. Инверсия смачиваемости поверхности.
при
нанесении на пов-ть 2х жид нераств друг
в друге, м/у ними обр краевой угол, хар-й
относ. спос-ть этих жид.смач-ть данное
тело. Для сравнит.оценки смач.пов.сопост-е
проводят по ср-ю с водой (с пол.жид-ми)
инверсия: закл.в качеств-м измен-и смач-ти пов-ти за счет адс-и ПАВ
Избир-е см-е: добыча нефти, офсетная печать,изгот-е пигментов для масл.красок, флотация (обогащение руд, цв.Ме)
21.
Молекулярно-кинитические свойства
дисперсных систем: броуновское движение,
диффузия.Броуновское
движение проявляется в хаотическом
движении частиц дисперсной фазы под
действием ударов молекул растворителя,
находящихся в состоянии интенсивного
молекулярно-теплового движения.
Смещением или сдвигом частицы
называется расстояние между проекциями
начальной и конечной точек траектории
на оси смещения. Диффузия – это процесс
самопроизвольного выравнивания
концентрац. В сис-ме, приводящий к
установлению равенства хим. Потенциала
во всех точках системы. Движущая сила
- броуновское движение.Количеств
хар-ка диффузии-диффузион поток-это
колво моль вещества,переносимого
диффузиейза ед времени через ед
площади пов-ти, перпенд располож
к поверхности. 1 закон Фика[D]=м2\с
,
22. Седиментация суспензий и седиментационный анализ дисперсных систем.
Процесс оседания частиц дисперсной фазы в жидкой или газовой дисперсионной среде под действием силы тяжести есть седиментация суспензий . По мере увеличения ск-ти оседания возникает сила трения пропор. Ск-ти частицы.Fтр=BU. Частица движется с постоянной скоростью, если сила трения уравновешена силой тяжести. V=2g(p-p0)r2/9η-закон седиментации, условия соблюдения данного закона:
1)Независимость оседания частиц(разб.системы)
2)Ламинарность
3) Дисперсность r=10-7/10-5
4) Сферическая форма частиц
Седиментационный анализ основан на различных скоростях оседания частиц разного размера, с помощью его можно найти средний радиус частицы, описывается ур-ями: m=(Q/H)*Uτ, где Q-общая масса, H-первоначальная высота столба суспензнии m=2Qд(p-p0)r2τ/9ηH, а также уравнением Сведберга-Одена m=qi+(dm/dτ)τ СМОТРЕТЬ ГРАФИК ТЕМА 3.5!!! Дифференциальные кривые распределения показывают распределение масс частиц по их размерам,а функция распределения представляет собой долю частиц в интервале(r+dr)
23. Седиментационно-диффузионное равновесие. Седиментационная устойчивость.
,
,
где -плотность частицы,
-
плотность дисп.среды,
концентрация
частич у дна сосуда, когдаh=0,
-концентрация
частиц на высотеh
от дна сосуда, V-объем
частицы. Седим.устойчивость- способность
системы протоивостоять действию
силы тяжести. Чем больше размеры
частицы,тем быстрее скорости оседания
частиц.
24. реологические свойства дисперсных систем. Понятия об упругих,вязких и пластических деформациях. Реология – наука о деформации и течении материала. Совокупность механических свойств – прочность, упругость, эластичность, пластичность – является важной характеристикой материала. Поскольку эти свойства связаны со структурой, они называются структурно –механическими. Упругопластические свойства характеризуют способность тел сопротивляться деформациям. Существуют два основных вида деформации: растяжение или сжатие и сдвиг. Деформации бывают упругими – тело полностью восстанавливает свои свойства после снятия нагрузки- и остаточные – без разрушения, возникает под действием тангенциального напряжения. В соответствии с этим тела делятся на упругие и пластичные. Деформации упругих тел описываются законом Гука : P=Е γ. Е – модуль Юнга характеризует жесткость тела. При напряжении большем критического происходит либо разрушение, либо остаточные деформации, характерные для пластичных тел. В этом случае устанавливается течение с постоянной скоростью при постоянном напряжении, отвечающем пределу текучести ( прочности). Вязкие тела отличаются от пластических тем, что текут при любых напряжениях. Течение идеально вязких тел описывается законом Ньютона.
P=ηdU/dx.
В основе пластических деформаций – необратимые перемещения атомов на значительные расстояния от исходных положений равновесия. Закон течения в области разрушения структуры описывается уравнением Бингама.
25. Основные законы реологии. Классификация дисперсных систем по структуре и структурно-механическим свойствам.Все реальные тела принято делить на жидкообразные, текущие при любых напряжениях, и твердообразные. Жидкообразные тела классифицируют на:
ньютоновские жидкости – системы, течение которых подчиняется закону Ньютона:
P
= ŋ,P
–
напряжение сдвига, ŋ-
коэффициент вязкости,
- градиент скорости.
неньютоновские жидкости – их вязкость зависит как от T, так и от напряжения сдвига. Они подразделяются а стационарные, реологические свойства которых не изменяются со временем, и нестационарные, для которых эти характеристики зависят от времени. Наиболее общим уравнением, описывающим течение стационарных неньютоновских жидкостей, является эмпирическое уравнение Оствальда-Вейля:
, гдеk и n – постоянные, данную жидкообразную систему. Если n=1, жидкость является ньютоновской, и константа k совпадает с ньютоновской вязкостью ŋ. При n<1 вязкость растет с увеличением скорости сдвига и напряжения. Эти жидкости наз-ся дилатантными.
а-для жидкообразных тел
б-для твердообразных
Разбавленные грегативно-устойчивые ДС со сферическими частицами обычно представляют собой ньютоновские ж-ти.
ур-е Эйнштейна:
ŋ= ŋ0(1+α φ)
α-коэффициент формы частицы
φ-объемная концентрация дисп.фазы
Согласно теории структурирования все структуры в коллоидных системах делаятся на:
-коагуляционные (за счет ван-дер-ваальсовых сил притяжения частиц)
-конденсационно-кристализационные(хим взаимодействие между частицами и их срастание)