Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
111.doc
Скачиваний:
264
Добавлен:
09.04.2015
Размер:
2.66 Mб
Скачать

42. Опыт Эйнштейна – де Гааза. Опыт Барнета. Магнетомеханическое отношение спин электрона.

Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое ока­залось равным (e/m). Таким образом, знак носителей, обусловливающих молекуляр­ные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g . Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов (см. (131.1) и (131.2)) электрон обладает собственным механическим моментом импульса Les, называ­емым спином. спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона Les, соответствует собственный (сотовый) магнитный момент рms, пропорци­ональный Les и направленный в противоположную сторону:

Величина gs называется гиромагнитным отношением спиновых моментов.

Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений:

где ħ=h/(2) (hпостоянная Планка), bмагнетон Бора, являющийся единицей магнитного момента электрона.

Магнитомехани́ческое (гиромагнитное) отноше́ние — отношение дипольного магнитного момента элементарной частицы (или системы элементарных частиц) к её механическому моменту.

В системе СИ единицей измерения отношения является с·А·кг−1 = с−1·Тл−1. Часто подразумевается, чтомагнитомеханическое отношение измеряется в единицах q/2mc, где с — скорость света, q и m — заряд и масса частицы, соответственно. В этом случае оно выражается безразмерной величиной.

Для различных состояний атомной системы отношение определяется формулой:1

где g — множитель Ланде, γ0 — единица гиромагнитного отношения:2

где e — элементарный заряд, me — масса электрона, с — скорость света.3

В случае ядер, за единицу гиромагнитного отношения принимают величину:4

где mp — масса протона.

Согласно классической теории, гиромагнитное отношение является коэффициентом пропорциональности между угловой скоростью прецессии магнитного момента, помещённого во внешнее магнитное поле, и вектором магнитной индукции. Барнет приводил железный стержень в очень быстрое вращение вокруг его оси и измерял возникающее при этом намагничивание. Из результатов этого опыта Барнет получил для магнитомеханич. отношения величину, в 2 раза превышающую значение -e/2m (т.к. кроме орбитальных моментов,е обладает собственными механич. Ms и магнитным Pms моментами, для к-рых магнитомеханическое отношение равно -e/2m, т.е. соотв. опыту).

43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряжённость магнитного поля.

Подобно тому, как для количественного описания поляризации диэлектриков вводи­лась поляризованность, для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнитным моментом единицы объема магнетика:

где — магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул .

Подставив выражения для В0 и В' в , получим

или

Как показывает опыт, в несильных полях намагниченность прямо пропорциональ­на напряженности поля, вызывающего намагничение, т. е.

где  — безразмерная величина, называемая магнитной восприимчивостью вещества. Для диамагнстихов  отрицательна (поле молекулярных токов противоположно вне­шнему), для парамагнетиков — положительна (поле молекулярных токов совпадает с внешним).

выражение можно записать в виде

откуда

Безразмерная величина

представляет собой магнитную проницаемость вещества. Подставив, придем к соотношению В=0Н, которое ранее постулировалось.

Так как абсолютное значение магнитной восприимчивости для диа- и парамаг­нетиков очень мало (порядка 10–4 —10–6), то для них незначительно отличается от единицы. Это просто понять, так как магнитное поле молекулярных токов значительно слабее намагничивающего поля. Таким образом, для диамагнетиков <0 и <1, для парамагнетиков >0 и >1.

Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напря­женность такого поля, магнитная индукция которого в вакууме равна 410–7 Тл.

Магнитное поле макротоков описывается вектором напряженности Н. Для однород­ной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим соотношением:

где 0 — магнитная постоянная, безразмерная величина — магнитная проницае­мость среды, показывающая, во сколько раз магнитное поле макротоков Н усаливается за счет поля микротоков среды.

Аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]