Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект раб 11.doc
Скачиваний:
419
Добавлен:
01.04.2015
Размер:
21.63 Mб
Скачать

11(15). Определение ударной вязкости при изгибе

С помощью динамических испытаний на ударный изгиб выявляют склонность материала к хрупкому разрушению. В нашей стране наиболее распространен метод Шарпи15, заключающийся в разрушении с помощьюмаятникового копра,одним ударом, лежащего концами на двух опорах специального образца – рис. 11.1. Для снижения разброса результатов при испытании металлов используют образцы с концентраторами напряжений – надрезами, а при испытании пластмасс – образцы с надрезами и без надрезов.

Для определения работы, затраченной на разрушение образца маятниковый копер снабжен устройством для отчета угла подъема маятника в исходном положении () и после разрушения образца (). Работа по разрушению образца равна разности потенциальных энергий маятника в исходном состоянииП0и в момент наивысшего подъема после разрушения образцаП1, которую можно выразить через углыи:

Аразр =П0П1=mg (H – h)=mgl (соs– соs),Дж,

где m– масса маятника,g– ускорение свободного падения,Hиh– высоты подъема,l– плечо маятника – рис. 11.1.

Рис. 11.1. Схема определения ударной вязкости при изгибе

Работа разрушенияАразрв общем случае идет на образование и распространение трещины. Стандартные образцы для испытаний на ударную вязкость имеют вид прямоугольного бруска с надрезом посередине. Надрезы могут быть с U-образной и более острой V-образной вершиной, а если в образце с острой вершиной перед испытанием создана трещина, то его называют Т-образным – рис. 11.2.

Рис. 11.2. Вид образцов с U, V и Т-образным надрезом

Чем острее надрез, тем меньше работа разрушения. Наиболее часто применяют образцы с «мягким» U-образным надрезом, образцы с V-образным надрезом используют при испытании материалов, идущих на изготовление особо ответственных изделий (труб для магистральных газопроводов, ледовых буровых платформ и т. п.). Использование Т-образных образцов позволяет в чистом виде определить работу распространения трещины.

Ударная вязкость обозначается буквами КСс присоединением еще одной буквы, указывающей на вид используемого надреза (КСU, КСVиКСТ), и рассчитывается по формуле:

гдеF– площадь поперечного сечения образца в месте надреза – см. рис. 11.1.

Ударная вязкостьхарактеризует способность материала сопротивляться динамическим (в том числе ударным) нагрузкам, приводящим к зарождению и развитию трещин; используется для оценки служебных характеристик материалов, идущих на изготовление ответственных деталей (валов, шестерен, труб нефте- и газопроводов, несущих элементов буровых платформ и т. п.).

Ударная вязкость многих материалов (в том числе сталей) существенно снижается при понижении температуры, когда вязкое разрушение становится хрупким. Поэтому сериальные испытания на ударную вязкость при пониженных температурах широко используются для определения порога хладноломкости (критической температуры хрупкости)16.

12. Испытание на вязкость разрушения

Хрупкое разрушение судов, мостов, кранов, строительных и дорожных машин и т. д. обычно происходит при довольно низких напряжениях, лежащих в упругой области, без макропластической деформации. Очагом хрупкого разрушения являются имеющиеся в металле микротрещины или трещиноподобные дефекты, возникающие в процессе эксплуатации. Поэтому разрушение конструкции обусловлено в основном сопротивлением металла распространению уже имеющейся опасной, острой трещины (вязкостью разрушения), а не ее зарождением.

В соответствии с положениями линейной механики разрушения, разработанными Д. Ж. Ирвиным, явления, происходящие у устья трещины, могут быть описаны с помощью параметра К, который представляет собойкоэффициент интенсивности напряжений в вершине трещины, или локальное повышение растягивающих напряжений у ведущего конца трещины:гдеY– безразмерный коэффициент, зависящий от типа (размеров) образца и трещины; σн– номинальное (среднее) напряжение вдали от трещины, МПа;l– длина трещины, мм. Отсюда размерностьКимеет вид: МПа∙мм1/2.

Если высвобождающаяся при разрушении удельная упругая энергия достигает критического уровня, трещина будет расти самопроизвольно.

Силовое условие начала самопроизвольного разрушения – достижение величиной Ккритического значенияКс. Чаще всегоКсопределяют в условиях плоского деформированного состояния, когда разрушение происходит путем отрыва – перпендикулярно к плоскости трещины. В этом случае коэффициент интенсивности напряжения, т. е. относительное повышение растягивающих напряжений в устье трещины, при переходе ее от стабильной к нестабильной стадии роста обозначаютК[МПа∙мм1/2] и называют еговязкостью разрушения при плоской деформации.

Испытание на вязкость разрушения проводят по схеме внецентренного растяжения специальных образцов при изгибе. Для испытания применяют образцы с прямоугольным поперечным сечением и односторонним острым надрезом (рис. 12.1). Предварительно на пульсаторе от надреза наводится усталостная трещина. Затем образец подвергают растяжению при постепенно повышающейся нагрузкеР. При испытании строят диаграмму нагрузкаР – смещениеV(смещение берегов трещины, т. е. расстояния между точками по обе стороны от трещины вследствие ее раскрытия). По этой диаграмме находят нагрузкуРQ, отвечающую началу нестабильного развития трещины, и по ней рассчитываютК.

Рис. 12.1. Схема нагружения образца при испытании на вязкость разрушения

Вязкость разрушения характеризует способность металла (сплава) противостоять развитию трещины. Поэтому нередко Кназываюттрещиностойкостью. Чем выше значениеК, тем меньше опасность хрупкого разрушения и выше надежность конструкции (машины), изготовляемой из этого материала.

Вязкость разрушения является структурно чувствительной характеристикой, т. е. она зависит от всех тех воздействий, которым подвергается металл при обработке (деформационной, термической и т. п.).К, как правило, тем ниже, чем выше предел текучести σ0,2(рис. 12.2). Поэтому для повышения конструктивной прочности нередко отказываются от высокопрочных материалов вследствие низкого значения их трещиностойкостиКи возможности хрупкого разрушения. Из рис. 12.2 также следует, что сталь по сравнению с титановыми, а тем более алюминиевыми сплавами, имеет большую вязкость разрушенияК.

Рис. 12.2. Зависимость вязкости разрушения К от σ0,2 для сталей (1), титановых (2) и алюминиевых (3) сплавов

Испытание на вязкость разрушения используют при экспертизе наиболее ответственных высокопрочных металлических материалов, идущих на изготовление сильно нагруженных конструкций (крупных сварных узлов, деталей самолетов, корпусов ракет, сосудов высокого давления, уникальных по своим размерам сооружений).