
- •Курс лекций по материаловедению
- •Предисловие
- •Рекомендуемая литература
- •1(1). Предмет материаловедения. Историческая справка
- •2(2). Мировое производство основных материалов
- •3(3). Черные и цветные металлы, свойства и применение
- •4(4). Сталь как важнейший конструкционный материал
- •5. Способы получения и технологической обработки металлов и сплавов
- •6. Виды контроля, параметры и методы оценки качества материалов
- •7(12). Механические испытания материалов
- •8(13). Испытание на растяжение
- •1. Характеристики прочности
- •2. Характеристики пластичности
- •9. Испытания на изгиб и сжатие
- •10(14). Определение твердости
- •1. Определение твердости по Бринеллю
- •2. Определение твердости по Роквеллу
- •3. Определение твердости по Виккерсу
- •11(15). Определение ударной вязкости при изгибе
- •12. Испытание на вязкость разрушения
- •13. Испытание на усталость. Живучесть
- •14. Стандарты на материалы. Принципы маркировки и сортамент металлических материалов
- •15. Строение металлического слитка. Влияние на механические свойства величины зерна, способы регулирования
- •16(5). Строение металлов. Применение поликристаллических, монокристаллических и аморфных материалов в промышленности
- •17(6). Основные типы кристаллических решеток. Анизотропия кристаллов
- •18(7). Точечные, линейные и поверхностные дефекты в кристаллах, влияние на прочность
- •19(8). Деформация и разрушение металла. Упругая и пластическая деформация. Механизм пластической деформации. Наклёп
- •20(10). Возврат и рекристаллизация
- •21. Холодная и горячая деформация. Сверхпластичность. Структура и свойства сплавов после горячей обработки давлением
- •22(17). Полиморфные превращения
- •23(18). Строение сплавов. Твердые растворы, химические соединения, механические смеси
- •24. Диаграммы фазового равновесия
- •25. Правило фаз и правило отрезков
- •26. Ликвация в сплавах
- •27. Связь между свойствами сплавов и типом диаграммы состояния
- •28(19). Фазы и структуры на диаграмме состояния железо-цементит
- •Механические свойства основных структурных составляющих сталей и чугунов
- •29(20). Железо и сплавы на его основе. Влияние углерода и постоянных примесей на свойства стали
- •30(21). Легирующие элементы в стали. Влияние легирующих элементов на диаграмму состояния
- •31(22). Структурные классы легированных сталей
- •32(23). Цели легирования
- •33. Превращения аустенита при охлаждении. Термокинетическая диаграмма
- •34(24). Основные виды термической обработки. Предварительная и окончательная термообработка
- •35(25). Виды отжига и их назначение
- •36(26). Закалка и отпуск сталей. Поверхностная закалка
- •37(27). Искусственное и естественное старение сплавов
- •38. Виды брака при термообработке
- •39(28). Термомеханическая обработка и ее разновидности
- •Сравнительные данные по механическим свойствам
- •40(29). Химико-термическая обработка, ее разновидности и применение
- •41(9). Объемное и поверхностное деформационное упрочнение
- •42(30). Классификация сталей
- •43(31). Конструкционные стали и сплавы, маркировка, свойства и область применения
- •1. Углеродистые стали
- •2. Легированные стали
- •44(32). Инструментальные стали и сплавы, маркировка, свойства и область применения
- •45(31.3). Стали и сплавы с особыми физическими свойствами
- •46(33). Белый, серый, высокопрочный, ковкий и легированный чугун, маркировка, структура, свойства и область применения
- •47(34). Магний и сплавы на его основе, маркировка, свойства и область применения
- •48. Бериллий и сплавы на его основе, маркировка, свойства и область применения
- •49(35). Алюминий и сплавы на его основе, маркировка, свойства и область применения
- •Классификация алюминиевых сплавов
- •50(36). Титан и сплавы на его основе, маркировка, свойства и область применения
- •51(37). Медь и сплавы на ее основе, маркировка, свойства и область применения
- •52. Никель и сплавы на его основе, маркировка, свойства и область применения
- •53(38). Тугоплавкие металлы и сплавы, маркировка, свойства и область применения
- •54(39). Антифрикционные материалы, маркировка, структура, свойства и область применения
- •55. (40). Неметаллические материалы. Классификация полимеров
- •56. (40). Пластические массы, состав, свойства и область применения
- •57. Эластомеры. Состав, классификация и свойства резин
- •58. Клеящие материалы и герметики, состав, классификация и свойства
- •59. Неорганические материалы. Графит, керамика, неорганическое стекло, ситаллы, свойства и область применения
- •60. Порошковые материалы, структура, свойства и область применения
- •61. Композиционные материалы с металлической и неметаллической матрицей, структура, свойства и область применения
- •62. Наноматериалы
- •63. Древесные материалы, классификация, свойства и область применения
- •64. Вспомогательные материалы. Смазочные и смазочно-охлаждающие материалы, асбест, бумага кожа, текстиль
- •65. Защитные и декоративные покрытия. Лакокрасочные, электролитические и горячие покрытия. Плакирование
- •Приложение а
- •Приложение б Кратные и дольные приставки к физическим единицам
- •Приложение в Ориентировочный перевод значений твердости, определяемых по методу Бринелля, Роквелла и Виккерса
- •Содержание
54(39). Антифрикционные материалы, маркировка, структура, свойства и область применения
Антифрикционные материалы предназначены для использования в различных подшипниках трения-скольжения, применяемых чаще, чем подшипники трения-качения (шариковых и роликовых). Эти материалы должны обладать комплексом противоречивых эксплуатационных свойств: малым коэффициентом трения по отношению к валам, обычно изготавливаемым из закаленной стали; высокой износостойкостью сочетающейся с небольшой твердостью, чтобы не изнашивался вал; достаточной прочностью и сравнительно легко деформироваться, чтобы принимать форму вала; коррозионной стойкостью и высокой теплопроводностью, чтобы отводить тепло, выделяющееся при трении; хорошо удерживать смазку на поверхности и т. д. В зависимости от состава различают антифрикционные материалы металлические (сплавы), неметаллические (полимерные, графитовые, древесные и др.) и комбинированные (металлополимерные, графитометаллические и др.)
Антифрикционные сплавы различного состава нашли самое широкое применение в промышленности для изготовления вкладышей подшипников скольжения. Для обеспечения требуемых эксплуатационных свойств структура антифрикционных сплавов должна состоять из мягкой и пластичной основы, в которую вкраплены твердые частицы химических соединений. В этом случае вал, опираясь на твердые частицы, быстро прирабатывается к подшипнику, а появившиеся канавки от движения твердых частиц образуют микроскопические каналы, по которым циркулирует смазка и уносятся продукты износа.
Рис. 54. Микроструктура оловянного баббита
Высочайшими антифрикционными свойствами обладают баббиты53 – мягкие сплавы на основе олова или более дешевого свинца. Баббиты наносятся в виде тонкого слоя (до 1 мм) на поверхность опоры скольжения. Самый дорогой баббит Б88 содержит 88 % олова, сурьму, медь и кадмий. Мягкой основой в нем является α-твердый раствор сурьмы в олове, а твердые частицы образованы β-фазой – твердым раствором на основеSnSbи кристаллами химического соединенияCu3Sn– рис. 54. Оловянные баббиты применяются для подшипников тяжело нагруженных машин (турбин, электрогенераторов, карьерных экскаваторов и т.п.). Более дешевый свинцово-оловянный баббит БС6 содержит 6 % олова, свинец, сурьму и медь. Еще более дешевыми являются свинцово-кальциевые баббиты типа БКА, БК2, содержащие десятые доли %Саи некоторых других элементов.
Высокими антифрикционными свойствами обладают рассмотренные ранее сплавы на медной основе – латуни и бронзы (оловянные, алюминиевые, свинцовые бронзы и кремнистые и марганцовистые латуни). В наиболее ответственных случаях используют бронзы с высоким содержанием олова и свинца.
Антифрикционные чугуныпо ГОСТ 1585-85 (серые АЧС-1, … АЧС-6, высокопрочные АЧВ-1, АЧВ-2 и ковкие АЧК-1, АЧК-2) по комплексу эксплуатационных свойств сопоставимы со сплавами на медной основе. Антифрикционные свойства чугунов в значительной степени определяются строением графитовой составляющей, выполняющей роль твердой смазки. В структуре антифрикционного чугуна желательно иметь более крупные включения графита, минимальное количество свободного феррита (до 15 %) и должен отсутствовать свободный цементит.
Для менее нагруженных конструкций в качестве втулок подшипников применяют:
цинковые антифрикционные сплавы, содержащие алюминий и медь: ЦАМ 9,5-1,5; ЦАМ 10-5 (10 % Al, 5 %Cu, остальноеZn), заменяющие при температурах до 100оС более дорогие оловянные бронзы;
алюминиевые антифрикционные (подшипниковые) сплавы, содержащие олово, медь, никель и кремний: АО3-1 (3 % Sn, 1%Cu, 0,4 %Ni, 1,9 %Si, остальноеAl), АО9-2, АО20-1, АН-2,5 (2,5 %Ni, остальноеAl).
В настоящее время в малонагруженных подшипниках расширяется использование втулок из полимерных и композиционных материалов, состоящих либо из одного полимера (капрон, фторопласт-4), либо полимера с наполнителем (текстолит), либо из смеси порошков железо-графит, бронза-графит, металлофторопласт и т. п. Применение подшипников скольжения из самосмазывающихся пластмасс упрощает конструкцию, снижает издержки при изготовлении и эксплуатации изделий.
Углеграфитовые антифрикционные материалыиспользуются для работы без дополнительной смазки в различных газовых и жидких агрессивных средах (кислотах, щелочах, растворах солей и органических растворителей) в широком диапазоне температур от –200 до +2000оС.
Ограниченное применение имеют антифрикционные материалы на основе древесины твердых пород (бакаута, самшита, бука) и фтороуглеродных резин, предназначенные для работы в водной среде, выполняющей роль смазки.