Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

КТОП теория

.pdf
Скачиваний:
37
Добавлен:
30.03.2015
Размер:
7.61 Mб
Скачать

Цветные металлы и сплавы. К ним относятся все металлы, кроме железа. Рассмотрим конструкционные металлы и сплавы, используемые в изделиях РЭА и ЭВА. Эта группа включает: алюминий, медь, титан, магний, бериллий и их сплавы.

Алюминий – металл серебристо-белого цвета, имеет малую плотность (2,7 г/см 3), хорошую тепло- и электропроводность, высокую коррозионную стойкость и пластичность, но малую прочность. Алюминий хорошо сваривается, обрабатывается давлением, но плохо поддается резанию. Его используют для изготовления проводов, фольги, для защиты других металлов от коррозии и для получения сплавов с более высокими механическими свойствами, чем алюминий. Алюминиевые сплавы с магнием, медью, кремнием и марганцем подразделяются на деформируемые и литейные.

Деформируемые алюминиевые сплавы. К этим сплавам повышенной пластичности относятся сплавы алюминия с марганцем (Амц) и магнием (Амг). Они применяются в основном в отожженом (мягком) состоянии. Для повышения прочностных свойств алюминиевые сплавы Амц и Амг нагартовывают, при этом резко снижается пластичность. Сплавы Амц и Амг применяют для изготовления кожухов, обечаек, крышек, заклепок и пр.

Большое распространение получили сплавы алюминия с медью, марганцем и магнием – дюралюмины. Прочность сплава увеличивают медь и магний, а марганец – его твердость и стойкость против коррозии. Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном и искусственном старении. Для закалки сплавы нагревают до 500С в соляной ванне и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5-7 суток. Искусственное старение проводят при 150 -180С в течение 2-4 ч. Дюралюмины имеют низкую коррозионную стойкость, поэтому их подвергают плакированию, которое заключается в горячей прокатке заготовки дюралюмина, обернутой чистым алюминием. Алюминий приваривается и защищает поверхность дюралюмина от коррозии. Дюралюмины выпускают в виде листов, прессованных и катаных профилей, прутков, труб. Из них изготавливают детали с высокой прочностью и малой массой. Они широко применяются в авиастроении.

Литейные алюминиевые сплавы. Их получают добавлением в алюминий кремния до 23%. Эти сплавы получили название силумины. Они обозначаются буквами АЛ и цифрой, указывающей на условный номер сплава. В сплав добавляются и легирующие присадки (медь, магний, цинк, титан), улучшающие, после проведения термической обработки, показатели механической прочности.

Медь и медные сплавы. Медь – металл розовато-красного цвета, имеет высокую плотность (8,94 г/см3), высокие тепло- и электропроводность, коррозионную стойкость и пластичность. Медь технологична, т. е. хорошо прокатывается, паяется и сваривается, но плохо поддается резанию. Благодаря высоким тепло- и электропроводным свойствам медь широко применяется для изготовления различных проводников тока, токопроводящих деталей, теплообменников и др.

Латунь – это сплав меди и цинка. Латунь прочнее, устойчивее против коррозии и дешевле, чем медь и хорошо обрабатываются давлением и резанием, обладают высокими литейными свойствами. Основные марки латуни: Л80, Л63, ЛС59 – 1 и др.

Бронза – это сплав меди с оловом и другими элементами: алюминием, бериллием, кремнием, марганцем, свинцом. Бронзы обладают высокой стойкостью против коррозии, хорошими литейными и высокими антифрикционными свойствами и обрабатываемостью резанием.

Бронзу маркируют по тому же принципу, что и латуни. После букв Бр (бронза) идут обозначения составных элементов сплава и их процентное содержание. Например, марка БрОЦС5-5-5 указывает на то, что бронза содержит олова, цинка, и свинца по 5%, остальное – 85% меди.

По химическому составу бронзы делят на оловянные и безоловянные, а по их технологическому назначению – на литейные и деформируемые. Оловянные бронзы обладают хорошими антифрикционными, антикоррозионными и литейными, а ряд марок (бериллиевые) и упругими свойствами. Ее применяют для изготовления опор с трением скольжения, венцов червячных колес, электрических контактов и пружин. Стоимость этих бронз высокая.

Безоловянные бронзы по литейным, антифрикционным и другим качествам хуже оловянных, однако ряд других показателей (механическая прочность, коррозионная стойкость) у них выше. Бериллиевая бронза БрБ2 обладает высокими механическими, антифрикционными и упругими свойствами и идет на изготовление таких деталей, как пружины, контакты, мембраны.

Магний, титан и сплавы на их основе. Магний – самый легкий из технических цветных металлов (плотность 1,74 г/см3). Технически чистый магний непрочный, малопластичный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, цинк, торий, цезий, цирконий и подвергают термообработке.

Магниевые сплавы делят на литейные и деформируемые. Первые применяют для изготовления деталей методом литья. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Сплавы МЛ применяют в авиастроении и в радиопромышленности для изготовления корпусов, шасси и т. п. Вторые – предназначенны для изготовления деталей из листов, прутков, профилей. Маркировка сплавов МА. Они применяются для изделий, где требуется малая масса. Ввиду низкой коррозионной стойкости магниевых сплавов детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.

Титан – серебристосерый металл с малой плотностью – 4,5 г/см3, высокой механической прочностью и хорошей коррозионной и химической стойкостью. Титан имеет низкие антифрикционные свойства и плохо обрабатывается резанием. Обозначение ВТ и порядковый номер сплава. Выпускают литейные и деформируемые сплавы. Их применяют в авиа-, ракетостроении и авиационном приборостроении. Для литья , например, применяют сплавы ВТ5Л, из которого получают отливки высокого качества в среде инертных газов или вакууме. Еще одно ценное свойство – титановые сплавы имеют близкий к стали температурный коэффициент линейного расширения.

Неметаллические материалы. К ним относятся пластмассы и резина. Пластмассы обладают хорошими диэлектрическими свойствами; их механические характеристики зависят от марки пластмассы. Пластмассы подразделяются на термореактивные и термопластичные.

Термореактивные пластмассы при повторном нагревании не переходят в пластичное состояние, так как в процессе изготовления входящие в ее состав смолы полимеризуются и превращаются в вещество с новыми свойствами. Термореактивные пластмассы, в свою очередь, можно разделить на монолитные (фторопласт-4), слоистые (текстолит, гетинакс, листовой стеклотекстолит) и композициннные, в состав которых кроме смолы, входит наполнитель в виде стекловолокна, хлопчатобумажных волокон и других материалов.

Термопластичные пластмассы (полиэтилен, винипласт, фторопласт − 3, полиметилакрилат и др.) при нагревании размягчаются и сплавляются. Получаемый в результате этого материал можно использовать для вторичной переработки. Неметаллические материалы. К ним относятся пластмассы и резина. Пластмассы обладают хорошими диэлектрическими свойствами; их механические характеристики зависят от марки пластмассы. Пластмассы подразделяются на термореактивные и термопластичные.

Термореактивные пластмассы при повторном нагревании не переходят в пластичное состояние, так как в процессе изготовления входящие в ее состав смолы полимеризуются и превращаются в вещество с новыми свойствами. Термореактивные пластмассы, в свою очередь, можно разделить на монолитные (фторопласт-4), слоистые (текстолит, гетинакс, листовой стеклотекстолит) и композициннные, в состав которых кроме смолы, входит наполнитель в виде стекловолокна, хлопчатобумажных волокон и других материалов.

Термопластичные пластмассы (полиэтилен, винипласт, фторопласт − 3, полиметилакрилат и др.) при нагревании размягчаются и сплавляются. Получаемый в результате этого материал можно использовать для вторичной переработки.