Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biolodgi.doc
Скачиваний:
228
Добавлен:
25.03.2015
Размер:
3.05 Mб
Скачать
  1. Гипотеза «один ген – один фермент», ее современная трактовка..

В 1902 году Арчибальд Гаррод, изучая наследственные болезни, связанные с дефектом обмена веществ, предположил, что за синтез определённого фермента отвечает один ген (гипотеза один ген – один фермент). Позднее Бидл и Татум экспериментально доказали это положение.

В конце 40-х годов ученые установили, что синтез всех белков (а не только ферментов) находится под контролем генов. Гипотеза приобрела вид: один ген – один белок.

Однако с открытием мультимерных белков (молекула таких белков состоит из нескольких полипептидных цепей) встал вопрос: один ген кодирует синтез всех цепей или каждая полипептидная цепь кодируется своим геном?

В 1957г Ингрэм установил, что причина серповидно-клеточной анемии – генная мутация, приводящая к замене в молекуле гемоглобина в 6 положении глутаминовой кислоты на валин.

Белок гемоглобина человека (глобин) состоит из двух α-цепей и двух β- цепей. Замена аминокислоты всегда наблюдается только в β-цепи, а α-цепь остаётся нормальной. Следовательно, мутировавший ген кодирует только одну цепь, а вторая цепь кодируется другим геном. Позже выяснили, что гены, кодирующие α-цепь находятся в 16 хромосоме, а гены, кодирующие β-цепь находятся в 11 хромосоме.

Гипотеза приобрела вид: один ген – одна полипептидная цепь.

5. Регуляция экспрессии генов у прокариот и эукариот.

Впервые регуляция экспрессии генов на уровне транскрипции была изучена у прокариот в 1961 году французскими учеными Ф. Жакобом и Ж. Моно. Они предложили модель оперона. Оперон состоит из гена регулятора, гена оператора и структурных генов, в которых записана информация и первичной структуре белка. Перед структурными генами находится особая последовательность нуклеотидов, которая называется оператор. Известно, что последовательности нуклеотидов оператора и промотора перекрываются.

Ген

промотор

активатор

А

В

С

регулятор

оператор

оперон

Ген регулятор кодирует синтез белка репрессора. Этот белок взаимодействует с оператором и блокирует его. Если заблокирован оператор, то блокируется и часть промотора. РНК-полимераза не может присоединиться к промотору, поэтому транскрипция не происходит и синтез белка не идёт. Это не активное состояние оперона.

При связывании белка репрессора ген оператор и промотор открыты, РНК-полимераза начинает процесс транскрипции, и происходит синтез белка.

Что же связывает белок репрессор?

-- вещества, которые могут находиться в клетке или поступающие в неё извне.

Эти вещества называются индукторами (индукция – наведение, запуск). Они связываются с белком репрессором и блокируют его. Теперь ген оператор освобождается от белка репрессора и запускает процесс синтеза белка. Такое состояние оперона называется активным.

У эукариот выделяют несколько уровней регуляции экспрессии генов.

– на уровне транскрипции

– на уровне процессинга иРНК

– на уровне выхода зрелой иРНК из ядра в цитоплазму.

– на уровне трансляции с помощью веществ, которые блокируют взаимодействие зрелой иРНК с рибосомами (антибиотики, химиопрепараты).

6. Классификация генов: структурные и регуляторные.

Все гены клетки в организме можно разделить на 2 группы, это:

– структурные гены, которые отвечают за все белки организма, за рРНК, и тРНК.

– регуляторные гены, которые соответственно регулируют работу структурных генов.

7. Цитоплазматическая наследственность.

Главная роль в передаче наследственных свойства принадлежит хромосомам. С ними связаны закономерности, открытые Г. Менделем. Но ряд органоидов, расположенных в цитоплазме содержит ДНК (митохондрии, пластиды). Их ДНК способна к репликации, и с ней может быть связана передача цитоплазматической наследственности. Существуют сорта львиного зева, ночной красавицы и некоторых других растений, у которых наряду с зелёными листьями встречаются пёстрые, с белыми пятнами – участкам, лишёнными хлорофилла. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом от яйцеклетки, цитоплазматическое наследование признаков осуществляется по материнской линии.

В клетках прокариот и эукариот обнаруживаются плазмиды – отрезки ДНК, имеющие кольцевую или линейную форму и способные к самостоятельной (независимо от ядра) репликации.

У бактерии наблюдается передача плазмид от клетки к клетке при их непосредственном контакте, а распределение их по дочерним клеткам при делении происходит случайно. Наличие плазмид может обеспечивать устойчивость бактерий к определённым антибиотикам. У растений и животных плазмиды могут существенно влиять на свойства многоклеточного организма.

ЛЕКЦИЯ 9 Фенотипическая и генотипическая изменчивость. Генные мутации и генные болезни.

  1. Определение изменчивости. Классификация ее форм.

Изменчивость – есть общее свойство живых организмов, заключающееся в изменении наследственных признаков в ходе онтогенеза (индивидуального развития).

Изменчивость организмов делят на два крупных типа:

1. фенотипическую, не затрагивающую генотип и не передающуюся по наследству;

2. генотипическую, изменяющую генотип и поэтому передаю­щуюся по наследству.

Генотипическая изменчивость подразделяется на комбинативную и мутационную.

Мутационная изменчивость включает геномные, хромосомные и генные мутации.

Геномные мутации подразделяется на полиплоидию и анеуплоидию

Хромосомные мутации подразделяется на делеции, дупликации, инверсии, транслокации

  1. Фенотипическая изменчивость. Норма реакции генетически детерминиро­ванных признаков. Адаптивный характер модификаций. Фенокопии.

Фенотипическая изменчивость (или ненаследственная, модификационная) – это изменение фенотипических признаков организма под действием факторов внешней среды, без изменения генотипа.

Например: окраска шерсти у гималайского кролика в зависимости от температуры среды обитания.

Норма реакции – это диапазон изменчивости, в пределах которого один и тот же генотип способен давать различные фенотипы.

  1. широкая норма реакции – когда колебания признака идут в широких пределах (например: загар, количество молока).

  2. узкая норма реакции – когда колебания признака незначительны (например: жирность молока).

  3. однозначная норма реакции – когда признак не изменяется, ни при каких условиях (например: группы крови, цвет глаз, разрез глаз).

Адаптивный характер модификаций заключается в том, что модификационная изменчивость позволяет организму адаптироваться к изменяющимся условиям среды. Поэтому модификации всегда полезны.

Если во время эмбриогенеза на организм воздействуют неблагоприятные факторы, то могут появляться фенотипические изменения, выходящие за пределы нормы реакции и не носящие адаптивного характера, их называют морфозы развития. Например, ребёнок рождается без конечностей или с заячьей губой.

Фенокопии – это морфозы развития, которые очень трудно отличить от наследственных изменений (заболеваний).

Например: если беременная женщина переболела краснухой, у неё может родиться ребёнок с катарактой. Но эта патология может появиться и в результате мутации. В первом случае речь идет о фенокопии.

Диагноз «фенокопия» важен для будущего прогноза, так как при фенокопии генетический материал не изменяется, то есть остается в норме.

  1. Комбинативная изменчивость. Значение комбинативной изменчивости в обеспечении генетического разнообразия людей.

Комбинативная изменчивость – это возникновение у потомков новых комбинаций генов, которых не было у их родителей.

Комбинативная изменчивость связана:

  • с кроссинговером в профазу мейоза 1.

  • с независимым расхождением гомологичных хромосом в анафазу мейоза 1.

  • со случайным сочетанием гамет при оплодотворении.

Значение комбинативной изменчивости – обеспечивает генетическое разнообразие особей в пределах вида, что важно для естественного отбора и эволюции.

  1. Мутационная изменчивость. Основные положения теории мутаций.

Гюго де Фриз голландский ученый ввел в 1901 году термин "мутация".

Мутация – это явление прерывистого скачкообразного изменения наследственного признака.

Процесс возникновения мутаций называется мутагенез, а организм, который приобретает новые признаки в процессе мутагенеза, называется – мутант.

Основные положения теории мутаций по Гюго де Фризу.

  1. мутации возникают внезапно без всяких переходов.

  2. возникшие формы вполне устойчивы.

  3. мутации являются качественными изменениями.

  4. мутации происходят в различных направлениях. они могут быть как полезными, так и вредными.

  5. одни и те же мутации могут возникать повторно.

  1. Классификация мутаций.

    1. По происхождению.

  1. Спонтанные мутации. Самопроизвольные мутации или естественные, возникают в обычных природных условиях.

  2. Индуцированные мутации. Вызванные мутации или искусственные, возникают при воздействии на организм мутагенных факторов.

    1. физические (ионизирующее излучение, УФЛ, высокая температура и т.п.)

    2. химические (соли тяжёлых металлов, азотистая кислота, свободные радикалы, бытовые и промышленные отходы, лекарства).

    3. биологические (вирусы, продукты жизнедеятельности паразитов).

    1. По месту возникновения.

      1. Соматические мутации возникают в соматических клетках и наследуются потомками тех клеток, в которых возникли. Из поколения в поколение не передаются.

      2. Генеративные мутации возникают в половых клетках и передаются из поколения в поколение.

    2. По характеру изменений фенотипа.

  1. Морфологические мутации, характеризующиеся изменением строения органа или организма в целом.

  2. Физиологические мутации, характеризующиеся изменением ф-й органа или организма в целом.

  3. Биохимические мутации связанные с изменением макромолекулы.

    1. По влиянию на жизнеспособность организма.

  1. Летальные мутации в 100% случаев приводят к гибели организма из-за несовместимых с жизнью дефектов.

  2. Полулетальные мутации приводят к гибели в 50-90% случаев. Обычно организмы с такими мутациями не доживают до репродуктивного периода.

  3. Условно летальные мутации, в одних условиях организм погибает, а в других условиях выживает (галактоземия).

  4. Полезные мутации повышают жизнеспособность организма и используются в селекции.

    1. По характеру изменения наследственного материала.

  1. Генные мутации.

  2. Хромосомные мутации.

  1. Генные мутации, определение. Механизмы возникновения спонтанных генных мутаций.

Генные мутации или точковые мутации – это мутации, которые возникают в генах на уровне нуклеотидов, при этом изменяется структура гена, изменяется молекула мРНК, изменяется последовательность аминокислот в белке, в организме изменяется признак.

Виды генных мутаций:

  • миссенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что в полипептидную цепь белка будет включаться другая аминокислота, которой в норме не должно быть, а это приведет к тому, что изменятся свойства и функции белка.

Пример: замена глутаминовой кислоты на валин в молекуле гемоглобина.

ЦТТ – глутаминовая кислота, ЦАТ – валин

Если такая мутация происходит в гене, который кодирует β цепь белка гемоглобина, то в β цепь вместо глютаминовой кислоты включается валин → в результате такой мутации изменяются свойства и функции белка гемоглобина и вместо нормального HbA появляется HbS, в результате у человека развивается серповидноклеточная анемия (форма эритроцитов изменяется).

  • нонсенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что генетически значащий триплет превратится в стоп кодон, что приводит к обрыву синтеза полипептидной цепи белка. Пример: УАЦ – тирозин. УАА – стоп кодон.

  • мутации со сдвигом рамки считывания наследственной информации.

Если в результате генной мутации у организма будет появляться новый признак (например, полидактилия), то они называются неоморфные.

если в результате генной мутации организм утрачивает признак (например, при ФКУ исчезает фермент) то они называются аморфные.

  • сеймсенс мутации – замена нуклеотида в триплете приводит к появлению триплета-синонима, который кодирует тот же самый белок. Это связано с вырожденностью генетического кода. Например: ЦТТ – глютамин ЦТЦ – глютамин.

Механизмы возникновения генных мутаций (замена, вставка, выпадение).

ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК – это полумутационное состояние или “первичное повреждение ДНК”. Каждую секунду в клетке имеет место 1 первичное повреждение ДНК.

Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.

Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера

  1. Частота генных мутаций. Мутации прямые и обратные, доминантные и рецессивные.

У человека частота мутаций = 1х10–4 – 1х10–7, то есть в среднем 20–30% гамет у человека в каждом поколении являются мутантными.

У дрозофилы частота мутаций = 1х10–5, то есть 1 гамета из 100 тысяч несет генную мутацию.

  1. Прямая мутация (рецессивная) – это мутация гена из доминантного состояния в рецессивное состояние: А → а.

  2. Обратная мутация (доминантная) – это мутация гена из рецессивного состояния в доминантное состояние: а → А.

Генные мутации встречаются у всех организмов, гены мутируют в различных направлениях, а также с различной частотой. Гены, которые редко мутируют называются – стабильные, а гены, которые часто мутируют называются – мутабельные.

  1. Закон гомологических рядов в наследственной изменчивости Н.И.Вави­лова.

Мутирование происходит в самых различных направлениях, т.е. случайно. Однако эти случайности подчиняются закономерности, обна­руженной в 1920г. Вавиловым. Он сформулировал закон гомологичных рядов в наследственной изменчивости.

"Виды и роды генетичес­ки близкие характеризуются сходными рядами наследственной измен­чивости с такой правильностью, что, зная ряд форм в пределах одно­го вида, можно предвидеть существование параллельных форм у других видов и родов".

Этот закон позволяет предсказать наличие определённого признака у особей различных родов одного семейства. Так было предска­зано наличие в природе безалкалоидного люпина, т.к. в семействе бобовых есть роды бобов, гороха, фасоли, не содержащие алкалоиды.

В медицине закон Вавилова позволяет использовать животных, генетически близких человеку, в качестве генетических моделей. На них ставят эксперименты по изуче­нию генетических болезней. Например, катаракта изучается на мышах и собаках; гемофилия – на собаках, врождённая глухота – на мышах, морских свинках, собаках.

Закон Вавилова позволяет предвидеть появление индуцирован­ных мутаций, неизвестных науке, которые могут использоваться в се­лекции для создания ценных для человека форм растений.

Соседние файлы в предмете Биология