
- •Классификация аминокислот.
- •4. Простые и сложные белки, их классификация. Характер связей простетических групп с белком. Биологические функции белков. Способность к специфическим взаимодействиям с лигандом.
- •5. Углеводсодержащие белки: гликопротеины, протеогликаны. Основные углеводы организма человека: моносахариды, дисахариды, гликоген, гетерополисахариды, их структура и функции.
- •8. Хромопротеины, их классификация. Флавопротеины, их структура и функции. Гемопротеины, структура, представители: гемоглобин, миоглобин, каталаза, пероксидаза, цитохромы. Функции гемопротеинов.
- •13. Энзимопатия у детей и важность их биохимической диагностики (на примере нарушения азотистого и углеводного обмена).
- •14. Витамины, классификация витаминов (по растворимость и функциональная). История открытия и изучения витаминов.
- •15. Витамин а, структура, участие в обменных процессах. Гипо- гипер- и авитаминоз а, их причины и особенности проявления. Пищевые источники, суточная потребность.
- •17. Витамин рр, структура коферментов, участие в обменных процессах. Гипо - и авитаминоз рр. Пищевые источники, суточная потребность.
- •18. Витамин в2, структура коферментов, участие в обменных процессах. Гиповитаминоз и авитаминоз в2. Суточная потребность, пищевые источники.
- •19. Витамин с, структура, участие в обменных процессах. Гипо- и авитаминоз с. Пищевые источники, суточная потребность.
- •20. Витамин в1, структура кофермента, участие в обменных процессах. Гиповитаминоз и авитаминоз в1. Пищевые источники, суточная потребность.
- •21. Витамин в6, структура кофермента, участие в обменных процессах. Гиповитаминоз и авитаминоз в6. Пищевые источники, суточная потребность.
- •22. Пантотеновая кислота и биотин, их участие в обменных процессах. Гиповитаминозы и авитаминозы в3 и н. Суточная потребность, источник этих витаминов.
- •23. Фолиевая кислота и кобаламин, их участие в обменных процессах, авитаминозы. Пищевые источники, суточная потребность.
- •24. Витамин е и к, участие их в обменных процессах. Гиповитаминозы и авитаминозы этих витаминов. Пищевые источники, суточная потребность.
- •25. Возрастные потребности в отдельных витаминах у ребенка. Особенности проявления гипо- и авитаминозов в раннем детском возрасте.
- •27. Гормоны гипоталамуса – либерины и статины. Химическая природа. Механизм их действия на молекулярном уровне, биологический эффект.
- •29. Гормоны задней доли гипофиза: вазопрессин, окситоцин. Химическая природа. Механизм их действия, биологический эффект. Нарушения функций организма, связанные с недостатком выработки этих гормонов.
- •32. Паратгормон и кальцитонин. Химическая природа. Механизм действия на молекулярном уровне. Влияние на обмен кальция, гиперкальциемия и гипокальциемия.
- •35. Половые гормоны: андрогены, эстрогены. Химическая природа. Механизм действия на молекулярном уровне, влияние на обмен веществ. Нарушения обмена при недостатке и избытке этих гормонов в организме.
- •45. Свободно-радикальное окисление. Токсичность кислорода: образование активных форм кислорода, их действие на липиды и другие вещества клетки. Механизм защиты: антиоксидантные системы
- •58. Своеобразие метаболизма гликогена в печени у ребенка. Патология обмена гликогена (гликогенозы).
- •60. Лабильность уровня глюкозы в крови у детей раннего возраста. Наклонность к гипогликемии. Своеобразие учета результатов нагрузной пробой сахара у детей.
- •62. Особенности переваривания и всасывания жиров в организме ребенка.
- •72. Повышенная активность биосинтеза и распада нейтральных жиров в тканях ребенка. Бурый жир, его значение.
- •73. Неустойчивость липидного обмена, связанная с недостаточно сформированной нейроэндокринной регуляцией. Кетонемия и ацетонемия у детей. Факторы, способствующие их развитию.
- •75. Патология обмена холестерина у детей. Наследственные нарушения липидного обмена: семейная гиперхолестеринемия и семейная триглицеридемия.
- •76. Обмен аминокислот и белков в питании ребенка. Понятие об азотистом балансе. Физиологическая азотемия новорожденных.
- •79. Замедленное переваривание белков в желудке у детей. Особенности исследования функции желудка в детском возрасте.
- •84. Обмен фенилаланина и тирозина. Образование катехоламинов, гормонов щитовидной железы, меланина. Нарушения процессов распада тирозина: фенилкетонурия, алкаптонурия, альбинизм.
- •85. Лабильность дезаминирования в гепатоцитах ребенка. Повышенная концентрация аминокислот в крови и моче ребенка раннего возраста. Своеобразие обмена некоторых аминокислот. Фенилаланин, тирозин.
- •89. Биосинтез пиримидиновых нуклеотидов, этапы этого процесса. Оротацидурия. Распад пиримидиновых нуклеотидов. Биосинтез дезоксирибонуклеотидов. Участие утф и цтф в обменных процессах.
- •91. Обмен нуклеиновых кислот и нуклеотидов у ребенка. Генетические нарушения, связанные с наследственными заболеваниями.
- •92. Биосинтез днк (репликация): стехиометрия реакций, днк-полимераза, матрица. Повреждение и распад днк.
- •93. Биосинтез рнк (транскрипция): рнк-полимераза, стехиометрия реакции, днк как матрица. Регуляция транскрипции. Посттранскрипционная достройка рнк. Молекулярные мутации. Наследственные болезни.
- •94. Биосинтез белков (трансляция). Стадии биосинтеза белка на рибосоме. Универсальность биологического кода и
- •96. Распад гема. Билирубин как продукт распада гема. Метаболизм билирубина. Нарушение его обмена. Желтухи и их биологическая диагностика.
- •97. Физиологическая желтуха новорожденных, ее причины.
- •98. Обмен гемоглобина у детей. Типы и виды гемоглобина. Его возрастная эволюция. Возрастные особенности 2,3-дфг эритроцита. Гемоглобинопатии.
- •101.Возрастные колебания общего белка крови и его фракции. Наличие фетальных белков в крови. Иммуноглобулины. Неспецифические факторы защиты.
- •103.Возрастные особенности содержание и распределения воды в организме ребенка. Лябильность водного обмена. Физиологическая потеря жидкости новорожденными.
- •106.Важность минеральных солей для обменных процессов у детей (пластическая и регуляторная роль). Значение прикорма ребенка для уменьшения дефицита минеральных солей.
- •110. Мукополисахаридоз у детей – наследственная лизосомальная болезнь накопления.
- •113.Роль креатинфосфата в мышечном сокращении у ребенка. Физиологическая креатинурия. Врожденные энзимопатии (фосфорилаза и фосфоглюкомутаза), приводящие к патологии мышечной системы.
- •114.Биохимия мышечной ткани у детей.
- •118.Своеобразие химического состава и метаболических процессов мозга плода и у ребенка раннего возраста.
- •120.Важность определения функционального состояния печени в детском возрасте.
- •121.Возрастные особенности процессов гниения в желудочно-кишечном тракте ребенка.
- •123.Характеристика периода новорожденности и его биохимические аспекты. Биохимические сдвиги новорожденного впервые часы постнатального периода.
- •124.Своеобразие метаболизма ребенка и его регуляция в различные возрастные периоды. Биохимические критерии, характеризующие отдельные возрастные этапы.
- •126.Особенности обмена веществ у ребенка раннего возраста. Несовершенство высших форм регуляции. Своеобразие гормональной регуляции.
- •127.Изменения ферментативных систем в ходе индивидуального развития организма как проявление биохимической адаптации. Срочная и замедленная адаптация.
13. Энзимопатия у детей и важность их биохимической диагностики (на примере нарушения азотистого и углеводного обмена).
Наиболее распространённый вариант энзимопатий, приводящий к развитию гемолитической анемии - недостаточность глюкозо6фосфат дегидрогеназы. Рассмотрим причины энзимопатий у детей. Заболевание широко распространено среди афроамериканцев (630%), меньше - среди татар (3,3%), народностей Дагестана (511,3%); в русской популяции выявляют редко (0,4%). Частный случай недостаточности глюкозо6фосфат дегидрогеназы - фавизм. Гемолиз развивается при употреблении в пищу конских бобов, фасоли, гороха, вдыхании нафталиновой пыли. Причины энзимопатий у детей Наследование недостаточности глюкозо6фосфат дегидрогеназы (N), в силу чего чаще болеют мужчины. В мире насчитывают около 400 млн носителей этого патологического гена. Заболевание развивается, как правило, после приёма определённых лекарственных средств [производные нитрофурана, хинин, изониазид, фтивазид, аминосалициловая кислота (натрия парааминосалицилат), налидиксовая кислота, сульфаниламиды и др.] или на фоне инфекции. Энзимопатии у детей – признаки. Заболевание проявляется бурным развитием гемолиза при употреблении перечисленных выше веществ или инфекциях (особенно при пневмониях, брюшном тифе, гепатите). Недостаточность глкжозо6фосфат дегидрогеназы может быть причиной желтухи новорождённых. В анализе крови выявляют ретикулоцитоз, повышение уровня прямого и непрямого билирубина, ЛДГ, щелочной фосфатазы. Морфология эритроцитов и эритроцитарные индексы не изменены. Диагноз устанавливают на основании результатов определения активности фермента. Энзимопатии у детей – лечение. Вне криза лечение не проводят. При лихорадке применяют физические методы охлаждения. При хроническом гемолизе назначают фолиевую кислоту 1 мт/сут по 3 нед каждые 3 мес. При кризе отменяют все лекарственные средства, проводят инфузионную терапию на фоне дегидратации.
14. Витамины, классификация витаминов (по растворимость и функциональная). История открытия и изучения витаминов.
Витамины - низкомолекулярные органические соединения различной химической природы и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами.
Для человека витамины - незаменимые пищевые факторы. Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов. По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.
А. Водорастворимые:
-
Витамин В1 (тиамин);
-
Витамин В2 (рибофлавин);
-
Витамин РР (никотиновая кислота, никотинамид, витамин В3);
-
Пантотеновая кислота (витамин В5);
-
Витамин В6 (пиридоксин);
-
Биотин (витамин Н);
-
Фолиевая кислота (витамин Вс, В9);
-
Витамин В12 (кобаламин);
-
Витамин С (аскорбиновая кислота);
-
Витамин Р (биофлавоноиды).
Б. Жирорастворимые
-
Витамин А (ретинол);
-
Витамин D (холекальциферол);
-
Витамин Е (токоферол);
-
Витамин К (филлохинон).
15. Витамин а, структура, участие в обменных процессах. Гипо- гипер- и авитаминоз а, их причины и особенности проявления. Пищевые источники, суточная потребность.
Витамин
А (ретинол) - циклический,
ненасыщенный, одноатомный спирт. Витамин
А содержится только в животных продуктах:
печени крупного рогатого скота и свиней,
яичном желтке, молочных продуктах;
особенно богат этим витамином рыбий
жир. Суточная
потребность витамина
А взрослого человека составляет от 1 до
2,5 мг витамина. Биологические
функции витамина А.
В организме ретинол превращается в
ретиналь и ретиноевую кислоту, участвующие
в регуляции ряда функций (в росте и
дифференцировке клеток); они также
составляют фотохимическую основу акта
зрения. Основные
клинические проявления гиповитаминоза А.
Наиболее ранний и характерный признак
недостаточности витамина А у людей -
нарушение сумеречного зрения (гемералопия,
или "куриная" слепота). Специфично
для авитаминоза А поражение глазного
яблока - ксерофтальмия, т.е. развитие
сухости роговой оболочки глаза как
следствие закупорки слёзного канала в
связи с ороговением эпителия. Это, в
свою очередь, приводит к развитию
конъюнктивита, отёку, изъязвлению и
размягчению роговой оболочки, т.е. к
кератомаляции. Ксерофтальмия и
кератомаляция при отсутствии
соответствующего лечения могут привести
к полной потере зрения.
16. Витамин Д, структура, участие в обменных процессах. Активные формы витамина Д в организме. Гипер-, гипо- и авитаминоз Д. Пищевые источники, суточная потребность.Роль витамина Д как антирахитического фактора. Биохимическая сущность рахита.
Витамины
группы D (кальциферолы)
- группа химически родственных соединений,
относящихся к производным стеринов.
Наиболее биологически активные витамины
- D2 и
D3.
Витамин D2 (эргокалферол),
производное эргостерина - растительного
стероида, встречающегося в некоторых
грибах, дрожжах и растительных маслах.
Источники. Наибольшее
количество витамина D3 содержится
в продуктах животного происхождения:
сливочном масле, желтке яиц, рыбьем
жире. Суточная
потребность для
детей 12-25 мкг (500-1000 ME), для взрослого
человека потребность значительно
меньше. Биологическая
роль. В
организме человека витамин
D3 гидроксилируется
в положениях 25 и 1 и превращается в
биологически активное соединение
1,25-дигидроксихолекальциферол. Кальцитриол
выполняет гормональную функцию, участвуя
в регуляции обмена Са2+ и
фосфатов, стимулируя всасывание Са2+ в
кишечнике и кальцификацию костной
ткани, реабсорбцию Са2+и
фосфатов в почках. Недостаточность. При
недостатке витамина D у детей развивается
заболевание "рахит", характеризуемое
нарушением кальцификации растущих
костей. При этом наблюдают деформацию
скелета с характерными изменениями.
Избыток. Поступление
в организм избыточного количества
витамина D3 может
вызвать гипервитаминоз D. Это состояние
характеризуется избыточным отложением
солей кальция в тканях лёгких, почек,
сердца, стенках сосудов, а также
остеопорозом с частыми переломами
костей.