
- •Классификация аминокислот.
- •4. Простые и сложные белки, их классификация. Характер связей простетических групп с белком. Биологические функции белков. Способность к специфическим взаимодействиям с лигандом.
- •5. Углеводсодержащие белки: гликопротеины, протеогликаны. Основные углеводы организма человека: моносахариды, дисахариды, гликоген, гетерополисахариды, их структура и функции.
- •8. Хромопротеины, их классификация. Флавопротеины, их структура и функции. Гемопротеины, структура, представители: гемоглобин, миоглобин, каталаза, пероксидаза, цитохромы. Функции гемопротеинов.
- •13. Энзимопатия у детей и важность их биохимической диагностики (на примере нарушения азотистого и углеводного обмена).
- •14. Витамины, классификация витаминов (по растворимость и функциональная). История открытия и изучения витаминов.
- •15. Витамин а, структура, участие в обменных процессах. Гипо- гипер- и авитаминоз а, их причины и особенности проявления. Пищевые источники, суточная потребность.
- •17. Витамин рр, структура коферментов, участие в обменных процессах. Гипо - и авитаминоз рр. Пищевые источники, суточная потребность.
- •18. Витамин в2, структура коферментов, участие в обменных процессах. Гиповитаминоз и авитаминоз в2. Суточная потребность, пищевые источники.
- •19. Витамин с, структура, участие в обменных процессах. Гипо- и авитаминоз с. Пищевые источники, суточная потребность.
- •20. Витамин в1, структура кофермента, участие в обменных процессах. Гиповитаминоз и авитаминоз в1. Пищевые источники, суточная потребность.
- •21. Витамин в6, структура кофермента, участие в обменных процессах. Гиповитаминоз и авитаминоз в6. Пищевые источники, суточная потребность.
- •22. Пантотеновая кислота и биотин, их участие в обменных процессах. Гиповитаминозы и авитаминозы в3 и н. Суточная потребность, источник этих витаминов.
- •23. Фолиевая кислота и кобаламин, их участие в обменных процессах, авитаминозы. Пищевые источники, суточная потребность.
- •24. Витамин е и к, участие их в обменных процессах. Гиповитаминозы и авитаминозы этих витаминов. Пищевые источники, суточная потребность.
- •25. Возрастные потребности в отдельных витаминах у ребенка. Особенности проявления гипо- и авитаминозов в раннем детском возрасте.
- •27. Гормоны гипоталамуса – либерины и статины. Химическая природа. Механизм их действия на молекулярном уровне, биологический эффект.
- •29. Гормоны задней доли гипофиза: вазопрессин, окситоцин. Химическая природа. Механизм их действия, биологический эффект. Нарушения функций организма, связанные с недостатком выработки этих гормонов.
- •32. Паратгормон и кальцитонин. Химическая природа. Механизм действия на молекулярном уровне. Влияние на обмен кальция, гиперкальциемия и гипокальциемия.
- •35. Половые гормоны: андрогены, эстрогены. Химическая природа. Механизм действия на молекулярном уровне, влияние на обмен веществ. Нарушения обмена при недостатке и избытке этих гормонов в организме.
- •45. Свободно-радикальное окисление. Токсичность кислорода: образование активных форм кислорода, их действие на липиды и другие вещества клетки. Механизм защиты: антиоксидантные системы
- •58. Своеобразие метаболизма гликогена в печени у ребенка. Патология обмена гликогена (гликогенозы).
- •60. Лабильность уровня глюкозы в крови у детей раннего возраста. Наклонность к гипогликемии. Своеобразие учета результатов нагрузной пробой сахара у детей.
- •62. Особенности переваривания и всасывания жиров в организме ребенка.
- •72. Повышенная активность биосинтеза и распада нейтральных жиров в тканях ребенка. Бурый жир, его значение.
- •73. Неустойчивость липидного обмена, связанная с недостаточно сформированной нейроэндокринной регуляцией. Кетонемия и ацетонемия у детей. Факторы, способствующие их развитию.
- •75. Патология обмена холестерина у детей. Наследственные нарушения липидного обмена: семейная гиперхолестеринемия и семейная триглицеридемия.
- •76. Обмен аминокислот и белков в питании ребенка. Понятие об азотистом балансе. Физиологическая азотемия новорожденных.
- •79. Замедленное переваривание белков в желудке у детей. Особенности исследования функции желудка в детском возрасте.
- •84. Обмен фенилаланина и тирозина. Образование катехоламинов, гормонов щитовидной железы, меланина. Нарушения процессов распада тирозина: фенилкетонурия, алкаптонурия, альбинизм.
- •85. Лабильность дезаминирования в гепатоцитах ребенка. Повышенная концентрация аминокислот в крови и моче ребенка раннего возраста. Своеобразие обмена некоторых аминокислот. Фенилаланин, тирозин.
- •89. Биосинтез пиримидиновых нуклеотидов, этапы этого процесса. Оротацидурия. Распад пиримидиновых нуклеотидов. Биосинтез дезоксирибонуклеотидов. Участие утф и цтф в обменных процессах.
- •91. Обмен нуклеиновых кислот и нуклеотидов у ребенка. Генетические нарушения, связанные с наследственными заболеваниями.
- •92. Биосинтез днк (репликация): стехиометрия реакций, днк-полимераза, матрица. Повреждение и распад днк.
- •93. Биосинтез рнк (транскрипция): рнк-полимераза, стехиометрия реакции, днк как матрица. Регуляция транскрипции. Посттранскрипционная достройка рнк. Молекулярные мутации. Наследственные болезни.
- •94. Биосинтез белков (трансляция). Стадии биосинтеза белка на рибосоме. Универсальность биологического кода и
- •96. Распад гема. Билирубин как продукт распада гема. Метаболизм билирубина. Нарушение его обмена. Желтухи и их биологическая диагностика.
- •97. Физиологическая желтуха новорожденных, ее причины.
- •98. Обмен гемоглобина у детей. Типы и виды гемоглобина. Его возрастная эволюция. Возрастные особенности 2,3-дфг эритроцита. Гемоглобинопатии.
- •101.Возрастные колебания общего белка крови и его фракции. Наличие фетальных белков в крови. Иммуноглобулины. Неспецифические факторы защиты.
- •103.Возрастные особенности содержание и распределения воды в организме ребенка. Лябильность водного обмена. Физиологическая потеря жидкости новорожденными.
- •106.Важность минеральных солей для обменных процессов у детей (пластическая и регуляторная роль). Значение прикорма ребенка для уменьшения дефицита минеральных солей.
- •110. Мукополисахаридоз у детей – наследственная лизосомальная болезнь накопления.
- •113.Роль креатинфосфата в мышечном сокращении у ребенка. Физиологическая креатинурия. Врожденные энзимопатии (фосфорилаза и фосфоглюкомутаза), приводящие к патологии мышечной системы.
- •114.Биохимия мышечной ткани у детей.
- •118.Своеобразие химического состава и метаболических процессов мозга плода и у ребенка раннего возраста.
- •120.Важность определения функционального состояния печени в детском возрасте.
- •121.Возрастные особенности процессов гниения в желудочно-кишечном тракте ребенка.
- •123.Характеристика периода новорожденности и его биохимические аспекты. Биохимические сдвиги новорожденного впервые часы постнатального периода.
- •124.Своеобразие метаболизма ребенка и его регуляция в различные возрастные периоды. Биохимические критерии, характеризующие отдельные возрастные этапы.
- •126.Особенности обмена веществ у ребенка раннего возраста. Несовершенство высших форм регуляции. Своеобразие гормональной регуляции.
- •127.Изменения ферментативных систем в ходе индивидуального развития организма как проявление биохимической адаптации. Срочная и замедленная адаптация.
98. Обмен гемоглобина у детей. Типы и виды гемоглобина. Его возрастная эволюция. Возрастные особенности 2,3-дфг эритроцита. Гемоглобинопатии.
Пониженный уровень гемоглобина у детей встречается довольно таки часто. Именно поэтому врачи рекомендуют регулярно проводить общий анализ крови у детей от 7 месяцев до 4-5 лет. Это необходимо делать потому, что низкий уровень гемоглобина в раннем возрасте может привести к неправильному развитию ребенка в психологических и интеллектуальных направлениях. Именно по этой причине важно не только устранять низкий уровень гемоглобина, но также и предотвращать его. Для того, что бы уровень гемоглобина у Вашего ребенка всегда был в норме, необходимо включить в рацион его питания продукты, которые в нужном количестве содержат такие вещества как: медь, марганец и железо. Особенно внимание стоит уделить продуктам содержащим железо, так как именно железо является основным компонентом гемоглобина, обеспечивающим его образование, а также химическое превращение. Марганец и медь также очень важны, так как они непосредственно влияют на баланс и обмен железа. При недостатки этих элементов будет развиваться дефицит железа, который повлечет за собой все вытекающие отсюда последствия. Также одной из причин появления у детей пониженной нормы гемоглобина является тот факт, что ребенок, находясь ещё в утробе, не получает от матери нужного количества необходимых микроэлементов, так как в период беременность у самых матерей нередко встречается низкий уровень гемоглобина. По этому женщинам в период беременности для профилактики тоже нужно употреблять железосодержащую пищу или специальные препараты. Нормальный уровень гемоглобина у новорожденных детей довольно высокий – от 140 до 225г\л. Со временем уровень понижается и в 1-2 месяц это показатель располагается на отметке 95-140г\л. Потом, через некоторое время, когда организм ребенка стает более активным и уже сам синтезирует необходимое количество гемоглобина, норма эго содержания в крови опять повышается и составляет 100-140г\л. Норма гемоглобина у детей до двух лет находится на отметке 100-145г\л. И все последующее года уровень только повышается, к 6 годам достигая отметки в 110-155г\л. У детей возрастом до 15 лет нормальный уровень находится на отметке 115-160г\л и к подростковому возрасту увеличивается до 120-160г\л. Гемоглобинопатия — наследственное или врождённое изменение или нарушение структуры белка гемоглобина, обычно приводящее к клинически или лабораторно наблюдаемым изменениям в его кислород-транспортирующей функции либо в строении и функции эритроцитов. К наиболее часто встречающимся и известным гемоглобинопатиям относятся серповидно-клеточная анемия, бета-талассемия, персистенция фетального гемоглобина. Гемоглобинопатии классифицируются на качественные и количественные. Качественные обусловлены заменой аминокислот в полипептидных цепях. Замена аминокислоты глутамина 6 на валин в β-цепи приводит к образованию аномального гемоглобина S, что лежит в основе развития серповидно-клеточной анемии. Аномальных гемоглобинов более 300, но не все аномалии проявляются. Количественные гемоглобинопатии связаны со скоростью синтеза α- или β-полипептидных цепей глобина. Угнетение скорости синтеза α-цепи приводит к развитию α-талассемии, угнетение синтеза β-цепи лежит в основе заболевания β-талассемии. Гемоглобинопатии —наследственные заболевания. Диагностика гемоглобинопатий основывается, кроме клинических данных, на обязательном специальном исследовании электрофорезе гемоглобина. Это исследование проводится не только для больного, но и для ближайших родственников. Данные электрофореза гемоглобина позволяют поставить диагноз талассемии. Для альфа-талассемии характерно обнаружение гемоглобинов-гомотетрамеров Нв-Н и Нв-Bart.Для бета-талассемии характерно повышенное содержание гемоглобина Α2.
99. Биохимия железа. Соединения железа, находящегося в клетке: гемопротеины, металлофлавопротеины, неферментное железо. Белки, переносящие железо: трансферрин. Белки, связывающие железо в клетке: феррин, гемосидерин. Участие железа в обмене веществ. Нарушение обмена железа (дефицит железа). Железодефицитные анемии.
В гемсодержащих белках железо находится в составе гема. В негемовых железосодержащих белках железо непосредственно связывается с белком. К таким белкам относят трансферрин, ферритин, окислительные ферменты рибонук-леотидредуктазу и ксантиноксидазу, железофлавопротеины NADH-дегидрогеназа и сукцинат-дегидрогеназа. В организме взрослого человека содержится 3 - 4 г железа, из которых только около 3,5 мг находится в плазме крови. Гемоглобин имеет примерно 68% железа всего организма, ферритин - 27%, миоглобин - 4%, трансферрин - 0,1%, На долю всех содержащих железо ферментов приходится всего 0,6% железа, имеющегося в организме. Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки. В нейтральной или щелочной среде железо находится в окисленном состоянии - Fe3+, образуя крупные, легко агрегирующие комплексы с ОН-, другими анионами и водой. При низких значениях рН железо восстанавливается и легко диссоциирует. Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме. Ионы железа обладают высоким сродством ко многим соединениям и образуют с ними хелатные комплексы, изменяя свойства и функции этих соединений, поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин. В пище железо в основном находится в окисленном состоянии (Fe3+) и входит в состав белков или солей органических кислот. Освобождению железа из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке. Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fe2+. В суточном количестве пищи обычно содержится 15 - 20 мг железа, а всасывается только около 10% этого количества. Организм взрослого человека теряет около 1 мг железа в сутки. Количество железа, которое всасывается в клетки слизистой оболочки кишечника, как правило, превышает потребности организма. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин "улавливает" железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается (см. ниже "Регуляция поступления железа в клетки"). Постоянное слущивание клеток слизистой оболочки в просвет кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется. елезо, поступающее из энтероцитов в кровь, транспортирует белок плазмы крови трансферрин. В плазме крови железо транспортирует белок трансферрин. Трансферрин - гликопротеин, который синтезируется в печени и связывает только окисленное железо (Fe3+). Поступающее в кровь железо окисляет фермент ферроксидаза, известный как медьсодержащий белок плазмы крови церулоплазмин. Одна молекула трансферрина может связать один или два иона Fe3+, но одновременно с анионом СО32- с образованием комплекса трансферрин-2 (Fe3+-CO32-). В норме трансферрин крови насыщен железом приблизительно на 33%. Нарушения метаболизма железа. Железодефицитная анемия может наблюдаться при повторяющихся кровотечениях, беременности, частых родах, язвах и опухолях ЖКТ, после операций на ЖКТ. При железодефицитной анемии уменьшается размер эритроцитов и их пигментация (гипохромные эритроциты малых размеров). В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях и плазме крови снижается концентрация ферритина. Причина этих изменений - недостаток железа в организме, вследствие чего снижается синтез гема и ферритина в неэритроидных тканях и гемоглобина в эритроидных клетках. Гемохроматоз. Когда количество железа в клетках превышает объём ферритинового депо, железо откладывается в белковой части молекулы ферритина. В результате образования таких аморфных тложений избыточного железа ферритии превращается в гемосидерин. Гемосидерин плохо растворим в воде и содержит до 37% железа Накопление гранул гемосидерина в печени, поджелудочной железе, селезёнке и печени приводит к повреждению этих органов - гемохроматозу.
100.Понятие о белках крови. Белки крови как гетерогенная система. Отдельные функции белков, их функциональная роль. Физиологические и патологические белки. Качественные и количественные изменения белков крови. Понятие о гипер-, гипо-, парапротеинемии. Белковый коэффициент.
Из 9–10% сухого остатка плазмы крови на долю белков приходится 6,5–8,5%. Используя метод высаливания нейтральными солями, белки плазмы крови можно разделить на три группы: альбумины, глобулины и фибриноген. Нормальное содержание альбуминов в плазме крови составляет 40–50 г/л, глобулинов – 20–30 г/л, фибриногена – 2,4 г/л. Плазма крови, лишенная фибриногена, называется сывороткой. Синтез белков плазмы крови осуществляется преимущественно в клетках печени и ретикулоэндотелиальной системы. Физиологическая роль белков плазмы крови многогранна. 1. Белки поддерживают коллоидно-осмотическое (онкотическое) давление и тем самым постоянный объем крови. Содержание белков в плазме значительно выше, чем в тканевой жидкости. Белки, являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла. Несмотря на то что онкотическое давление составляет лишь небольшую часть (около 0,5%) от общего осмотического давления, именно оно обусловливает преобладание осмотического давления крови над осмотическим давлением тканевой жидкости. 2. Белки плазмы принимают активное участие в свертывании крови. Ряд белков, в том числе фибриноген, являются основными компонентами системы свертывания крови. 3. Белки плазмы в известной мере определяют вязкость крови, которая, как отмечалось, в 4– раз выше вязкости воды и играет важную роль в поддержании гемодинамических отношений в кровеносной системе.
крови.