
- •1 Классификация и строение углеводов. Функции углеводов различных классов
- •2 Классификация аминокислот и их биохимические функции
- •3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
- •5. Строение и функции липидов
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме
- •8. Строение фосфолипидов. Роль фосфолипидов в организме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •11. Строение и функции разных классов липопротеидов
- •12. Строение желчных кислот. Их роль в метаболизме.
- •13. Биологическая роль макро- и микроэлементов
- •14. Роль кальция в метаболизме
- •15. Роль фосфопиридоксаля в метаболизме
- •16. Роль биотина в метаболизме
- •17. Биохимическая функция витамина в12
- •18. Биологическая роль пантотеновой кислоты
- •19. Биологическая роль рибофлавина
- •20. Биологическая роль никотинамида
- •21. Биохимические функции тиаминпирофосфата
- •22. Биохимические функции витамина с
- •23. Биологическая роль тетрагидрофолиевой кислоты
- •24. Биологическая роль витамина д
- •25. Биологическая роль витамина а
- •26. Биологическая роль витамина е
- •27. Биологическая роль витамина к
- •28. Механизм ферментного катализа
- •29. Строение и классификация ферментов
- •30. Конкурентное и неконкурентное ингибирование ферментов
- •31. Особенности биологического катализа
- •32. Классификация гормонов Роль гормонов в регуляции метаболизма
- •33.Гормоны надпочечеников и их биохимические функции
- •34. Гормоны гипофиза и их биологическая роль
- •35. Биологическая роль половых гормонов
- •36. Биологическая роль гормонов коры надпочечников
- •37. Биологическая роль гормонов поджелудочной железы
- •38. Гормоны щитовидной железы и их влияние на метаболизм
- •39. Механизмы передачи гормонального сигнала
- •40. Механизм передачи сигнала гормонов аминокислотой и белковой природы
- •41. Биохимическая роль вторичных мессенджеров в метаболизме
- •42. Макроэргические соединения и их роль в метаболизме
- •43. Дыхательная цепь в митохондриях
- •44. Последовательность и строение переносчиков электронов в дыхательной цепи
- •45. Процесс окислительного фосфорилирования его биологическая роль
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках
- •Механизмы действия
- •48. Антиоксидантные системы клетки и их биологическая роль
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата
- •50. Механизм реакций и биологическая роль цикла кребса
- •51. Биосинтез гликогена
- •52. Гликолиз и его биологическое значение
- •53. Глюконеогенез и его биологическая роль
- •54. Пентозофосфатный путь окисления углеводов
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных
- •56. Роль летучих жирных кислот в метаболизме жвачных животных
- •57. Строение клеточных мембран и их функции
- •58. Физико-химические свойства липипдов. Эмульгирование липидов
- •59. Механизм транспорта липидов
- •60. Биохимических механизм бета-окисления жирных кислот
- •61. Механизм синтеза жирных кислот
- •62. Биологическая роль холестерина и его производных
- •63. Синтез триглицеридов и фосфолипидов
- •64. Кетоновые тела и их роль в метаболизме
- •65. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков
- •66. Биохимические механизмы переваривания белков в желудочно-кишечном тракте
- •67. Механизмы реакций трансаминирования и дезаминирования аминокислот
- •68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования
- •69. Орнитиновый цикл
- •70. Биологические механизмы окисления нуклеотидов
- •71. Строение молекул днк
- •72. Биохимические механизмы синтеза днк
- •73. Репликация и репарация
- •74. Строение рнк. Виды Рнк. Их роль в метаболизме
- •75. Биохимические механизмы синтеза рнк
- •76. Биохимические механизмы синтеза белка
16. Роль биотина в метаболизме
Биоти́н (витамин Н, витамин B7, кофермент R) — водорастворимый витамин группы В. Молекула биотина состоит из тетрагидроимидазольного и тетрагидротиофенового кольца, в тетрагидротиофеновом кольце один из атомов водорода замещен на валериановую кислоту. Биотин является кофактором в метаболизме жирных кислот, лейцина и в процессе глюконеогенеза.
Входит в состав ферментов, регулирующих белковый и жировой обмен, обладает высокой активностью. Участвует в синтезе глюкокиназы — фермента, регулирующего обмен сахаров.
Является коферментом различных ферментов, в том числе и транскарбоксилаз. Участвует в синтезе пуриновых нуклеотидов. Является источником серы, которая принимает участие в синтезе коллагена. С участием биотина протекают реакции активирования и переноса СО2.
По последним данным, биотин играет важную роль в углеводном обмене, взаимодействуя с гормоном поджелудочной железы инсулином. Кроме того, биотин участвует в производстве так называемой глюкокиназы - вещества, которое "запускает" обмен глюкозы.
Глюкокиназа вырабатывается в печени, там же, где хранится биотин. Это особенно важно для диабетиков, у которых содержание глюкокиназы в печени понижено. Немалую роль играет биотин и в синтезе гликогенов - накапливаемых в печени и мышцах углеводов, а также в усвоении этих запасов и в так называемом глюконеогенезе, в процессе которого 16 из 22 аминокислот преобразуются в глюкозу. Этот процесс исключительно важен для поддержания стабильного уровня сахара в крови. Таким образом биотин стабилизирует содержание сахара в крови.
Он помогает также усваивать белок и в обмене веществ является важным союзником других витаминов группы В, таких как фолиевая и пантотеновая кислоты и витамин В12. Кроме того, он участвует в разложении жирных кислот и в сжигании жира.
Биотин зарекомендовал себя как идеальное транспортное средство, которое всегда доставляет свой груз серы строго по назначению.
Поскольку биотин контролирует обмен жиров и преимущественно находится в клетках кожи и волос, он, естественно, влияет на содержание жира в коже.
Поскольку биотин оптимизирует использование жирных кислот в организме и делает кожу головы менее маслянистой, он может улучшать общую структуру и внешний вид волос.
Еще одна важная задача биотина заключается в том, чтобы связывать двуокись углерода с пуринами, в которых содержится наследственная информация нашего организма. Он требуется и для синтеза гемоглобина - пигмента красных кровяных телец.
17. Биохимическая функция витамина в12
Витаминами B12 называют группу кобальтсодержащих биологически активных веществ, называемых кобаламинами. К ним относят собственно цианокобаламин — продукт, получаемый при химической очистке витамина цианидами, гидроксикобаламин и две коферментные формы витамина B12: метилкобаламин и 5-дезоксиаденозилкобаламин.
В более узком смысле витамином B12 называют цианокобаламин, так как именно в этой форме в организм человека поступает основное количество витамина B12, не упуская из вида то, что он не синоним с B12 и несколько других соединений также обладают B12 витаминной активностью. Цианокобаламин лишь один из них. Следовательно, цианокобаламин всегда витамин B12, но не всегда витамин B12 является цианокобаламином.
Ковалентная связь C-Co кофермента B12 участвует в двух типах ферментативных реакций:
-Реакции переноса атомов, при которых атом водорода переносится непосредственно с одной группы на другую, при этом замещение происходит по алкильной группе, спиртовому атому кислорода или аминогруппе.
-Реакции переноса метильной группы (-CH3) между двумя молекулами.
В организме человека есть только два фермента с коферментом B12:
Метилмалонил-КоА-мутаза, фермент, использующий в качестве кофактора аденозилкобаламин и при помощи реакции, упомянутой выше в п.1, катализирует перестановку атомов в углеродном скелете. В результате реакции из L-метилмалонил-КоА получается сукцинил-КоА. Эта реакция является важным звеном в цепи реакций биологического окисления белков и жиров.
5-метилтетрагидрофолат-гомоцистеин-метилтрансфераза, фермент из группы метилтрансфераз, использующий в качестве кофактора метилкобаламин и при помощи реакции, упомянутой выше в п.2, катализирует превращение аминокислоты гомоцистеина в аминокислоту метионин.