
- •1 Классификация и строение углеводов. Функции углеводов различных классов
- •2 Классификация аминокислот и их биохимические функции
- •3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
- •5. Строение и функции липидов
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме
- •8. Строение фосфолипидов. Роль фосфолипидов в организме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •11. Строение и функции разных классов липопротеидов
- •12. Строение желчных кислот. Их роль в метаболизме.
- •13. Биологическая роль макро- и микроэлементов
- •14. Роль кальция в метаболизме
- •15. Роль фосфопиридоксаля в метаболизме
- •16. Роль биотина в метаболизме
- •17. Биохимическая функция витамина в12
- •18. Биологическая роль пантотеновой кислоты
- •19. Биологическая роль рибофлавина
- •20. Биологическая роль никотинамида
- •21. Биохимические функции тиаминпирофосфата
- •22. Биохимические функции витамина с
- •23. Биологическая роль тетрагидрофолиевой кислоты
- •24. Биологическая роль витамина д
- •25. Биологическая роль витамина а
- •26. Биологическая роль витамина е
- •27. Биологическая роль витамина к
- •28. Механизм ферментного катализа
- •29. Строение и классификация ферментов
- •30. Конкурентное и неконкурентное ингибирование ферментов
- •31. Особенности биологического катализа
- •32. Классификация гормонов Роль гормонов в регуляции метаболизма
- •33.Гормоны надпочечеников и их биохимические функции
- •34. Гормоны гипофиза и их биологическая роль
- •35. Биологическая роль половых гормонов
- •36. Биологическая роль гормонов коры надпочечников
- •37. Биологическая роль гормонов поджелудочной железы
- •38. Гормоны щитовидной железы и их влияние на метаболизм
- •39. Механизмы передачи гормонального сигнала
- •40. Механизм передачи сигнала гормонов аминокислотой и белковой природы
- •41. Биохимическая роль вторичных мессенджеров в метаболизме
- •42. Макроэргические соединения и их роль в метаболизме
- •43. Дыхательная цепь в митохондриях
- •44. Последовательность и строение переносчиков электронов в дыхательной цепи
- •45. Процесс окислительного фосфорилирования его биологическая роль
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках
- •Механизмы действия
- •48. Антиоксидантные системы клетки и их биологическая роль
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата
- •50. Механизм реакций и биологическая роль цикла кребса
- •51. Биосинтез гликогена
- •52. Гликолиз и его биологическое значение
- •53. Глюконеогенез и его биологическая роль
- •54. Пентозофосфатный путь окисления углеводов
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных
- •56. Роль летучих жирных кислот в метаболизме жвачных животных
- •57. Строение клеточных мембран и их функции
- •58. Физико-химические свойства липипдов. Эмульгирование липидов
- •59. Механизм транспорта липидов
- •60. Биохимических механизм бета-окисления жирных кислот
- •61. Механизм синтеза жирных кислот
- •62. Биологическая роль холестерина и его производных
- •63. Синтез триглицеридов и фосфолипидов
- •64. Кетоновые тела и их роль в метаболизме
- •65. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков
- •66. Биохимические механизмы переваривания белков в желудочно-кишечном тракте
- •67. Механизмы реакций трансаминирования и дезаминирования аминокислот
- •68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования
- •69. Орнитиновый цикл
- •70. Биологические механизмы окисления нуклеотидов
- •71. Строение молекул днк
- •72. Биохимические механизмы синтеза днк
- •73. Репликация и репарация
- •74. Строение рнк. Виды Рнк. Их роль в метаболизме
- •75. Биохимические механизмы синтеза рнк
- •76. Биохимические механизмы синтеза белка
7. Строение нуклеотидов. Роль нуклеотидов в метаболизме
Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Строение
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент.В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-дезоксирибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2'-, 3'- или 5'-гидроксильными группами рибонуклеозидов, в случае 2'-дезоксинуклеозидов этерифицируются 3'- или 5'-гидроксильные группы.
Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты.
Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты,) и моноэфиры триполифосфорной кислоты (трифосфаты).
8. Строение фосфолипидов. Роль фосфолипидов в организме.
Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.
Фосфолипиды входят в состав всех клеточных мембран.
Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды.
Наиболее распространенная группа Фосфолипидов — фосфоглицериды, также к фосфолипидам относятся фосфосфинголипиды и фосфоинозитиды.
Фосфолипиды — амфифильные вещества. Они состоят из полярной «головки», в состав которой входит глицерин или другой многоатомный спирт, отрицательно заряженный остаток фосфорной кислоты и часто несущая положительный заряд группа атомов, и двух неполярных «хвостов» из остатков жирных кислот. Главная особенность фосфолипидов состоит в том, что «головка» у них гидрофильна, а «хвосты» гидрофобны. Это позволяет при нахождении в толще водной среды образовывать бислой — двойной слой фосфолипидных молекул, где гидрофильные головы с обеих сторон соприкасаются с водой, а гидрофобные хвосты упрятаны внутрь бислоя и тем самым защищены от контакта с водой.
Это определяет многие физические и химические свойства фосфолипидов, например, способность формировать липосомы и биологические мембраны (липидный бислой). Химическая структура полярной «головки» определяет суммарный электрический заряд и ионное состояние фосфолипида. «Хвосты» контактируют с липидным окружением, а «головки» — с водным, так как неполярные жирные хвосты не могут соприкасаться с водой.
Главный липидный компонент клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимый для жизни человека.
Фосфолипиды являются важной частью клеточных мембран. Они обеспечивают текучие и пластические свойства мембран клеток и клеточных органоидов, в то время как холестерин обеспечивает жёсткость и стабильность мембран. Как фосфолипиды, так и холестерин часто входят в состав липопротеидов клеточных мембран, но имеются в мембранах и в свободном, не связанном с белками состоянии. Соотношение холестерин/фосфолипиды в основном и определяет текучесть либо жёсткость клеточной мембраны.
Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Будучи более гидрофильными, чем холестерин, благодаря наличию в молекуле остатков фосфорной кислоты, фосфолипиды являются своеобразными «растворителями» для холестерина и других высоко гидрофобных соединений. Соотношение холестерин/фосфолипиды в составе липопротеидов плазмы крови наряду с молекулярным весом липопротеидов (ЛПВП, ЛПНП или ЛПОНП) предопределяет степень растворимости холестерина и его атерогенные свойства. Соотношение холестерин/фосфолипиды в составе желчи предопределяет степень литогенности желчи - степень склонности к выпадению холестериновых желчных камней.
Фосфолипиды замедляют синтез коллагена и повышают активность коллагеназы (фермента, разрушающего коллаген). Поскольку коллаген определяет замещение эпителиальной ткани соединительной, фосфолипиды оказывают противорубцовый (антифибротический) эффект.