
- •1 Классификация и строение углеводов. Функции углеводов различных классов
- •2 Классификация аминокислот и их биохимические функции
- •3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
- •5. Строение и функции липидов
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме
- •8. Строение фосфолипидов. Роль фосфолипидов в организме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •11. Строение и функции разных классов липопротеидов
- •12. Строение желчных кислот. Их роль в метаболизме.
- •13. Биологическая роль макро- и микроэлементов
- •14. Роль кальция в метаболизме
- •15. Роль фосфопиридоксаля в метаболизме
- •16. Роль биотина в метаболизме
- •17. Биохимическая функция витамина в12
- •18. Биологическая роль пантотеновой кислоты
- •19. Биологическая роль рибофлавина
- •20. Биологическая роль никотинамида
- •21. Биохимические функции тиаминпирофосфата
- •22. Биохимические функции витамина с
- •23. Биологическая роль тетрагидрофолиевой кислоты
- •24. Биологическая роль витамина д
- •25. Биологическая роль витамина а
- •26. Биологическая роль витамина е
- •27. Биологическая роль витамина к
- •28. Механизм ферментного катализа
- •29. Строение и классификация ферментов
- •30. Конкурентное и неконкурентное ингибирование ферментов
- •31. Особенности биологического катализа
- •32. Классификация гормонов Роль гормонов в регуляции метаболизма
- •33.Гормоны надпочечеников и их биохимические функции
- •34. Гормоны гипофиза и их биологическая роль
- •35. Биологическая роль половых гормонов
- •36. Биологическая роль гормонов коры надпочечников
- •37. Биологическая роль гормонов поджелудочной железы
- •38. Гормоны щитовидной железы и их влияние на метаболизм
- •39. Механизмы передачи гормонального сигнала
- •40. Механизм передачи сигнала гормонов аминокислотой и белковой природы
- •41. Биохимическая роль вторичных мессенджеров в метаболизме
- •42. Макроэргические соединения и их роль в метаболизме
- •43. Дыхательная цепь в митохондриях
- •44. Последовательность и строение переносчиков электронов в дыхательной цепи
- •45. Процесс окислительного фосфорилирования его биологическая роль
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках
- •Механизмы действия
- •48. Антиоксидантные системы клетки и их биологическая роль
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата
- •50. Механизм реакций и биологическая роль цикла кребса
- •51. Биосинтез гликогена
- •52. Гликолиз и его биологическое значение
- •53. Глюконеогенез и его биологическая роль
- •54. Пентозофосфатный путь окисления углеводов
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных
- •56. Роль летучих жирных кислот в метаболизме жвачных животных
- •57. Строение клеточных мембран и их функции
- •58. Физико-химические свойства липипдов. Эмульгирование липидов
- •59. Механизм транспорта липидов
- •60. Биохимических механизм бета-окисления жирных кислот
- •61. Механизм синтеза жирных кислот
- •62. Биологическая роль холестерина и его производных
- •63. Синтез триглицеридов и фосфолипидов
- •64. Кетоновые тела и их роль в метаболизме
- •65. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков
- •66. Биохимические механизмы переваривания белков в желудочно-кишечном тракте
- •67. Механизмы реакций трансаминирования и дезаминирования аминокислот
- •68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования
- •69. Орнитиновый цикл
- •70. Биологические механизмы окисления нуклеотидов
- •71. Строение молекул днк
- •72. Биохимические механизмы синтеза днк
- •73. Репликация и репарация
- •74. Строение рнк. Виды Рнк. Их роль в метаболизме
- •75. Биохимические механизмы синтеза рнк
- •76. Биохимические механизмы синтеза белка
3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
Кроме последовательности аминокислот полипептида (первичной структуры), определяемой генетическим кодом, крайне важны структуры более высоких порядков, которые формируются в процессе сворачивания белка. Обычно выделяют четыре уровня структуры белка:
-Первичная структура — последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы — сочетания аминокислот, играющих ключевую роль в функциях белка. Эти мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.
-Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.
-Третичная структура — трехмерное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:
ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);
ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;
водородные связи;
гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.
-Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.
4. Денатурация белка и факторы вызывающие денатурацию белка. Денатурация белков. Как правило, белки сохраняют структуру и, следовательно, физико-химические свойства, например, растворимость в физико-химических условиях, таких как температура и pH, к которым приспособлен данный организм. Изменение этих условий, например, сильное нагревание или обработка белка кислотой или щёлочью, приводит к потере четвертичной, третичной и вторичной структур белка.
Потеря белком или другим биополимером естественной структуры называется денатурацией. Денатурация белка может быть полной или частичной, обратимой или необратимой.
Самый известный случай необратимой денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения водорастворимых белков с помощью солей аммония, и используется как способ их очистки.
Под денатурацией понимают утрату трехмерной конформации, присущей данной белковой молекуле. Это изменение может носить временный или постоянный характер, но и в том, и в другом случае аминокислотная последовательность белка остается неизменной. При денатурации молекула развертывается и теряет способность выполнять свою обычную биологическую функцию.
Вызывать денатурацию белков могут разнообразные факторы:
-Нагревание или облучение белка, например инфракрасное или ультрафиолетовое. -Кинетическая энергия, сообщаемая белку, вызывает вибрацию его атомов, вследствие чего слабые водородные и ионные связи разрываются,и белок свертывается (коагулирует).
-Сильные кислоты, щелочи, соли денатурируют белок. Под действием этих реагентов ионные связи разрываются и белок коагулирует. Длительное воздействие реагента может вызвать разрыв и пептидных связей.
-Тяжелые металлы денатурируют белок. Положительно заряженные ионы тяжелых металлов (катионы) образуют прочные связи с отрицательно заряженными карбоксил-анионами R-групп белка и часто вызывают разрывы ионных связей. Они также снижают электрическую поляризацию белка, уменьшая его растворимость. Вследствие этого находящийся в растворе белок выпадает в осадок.
-Органические растворители и детергенты денатурируют белок. Эти реагенты нарушают гидрофобные взаимодействия и образуют связи с гидрофобными (неполярными) группами. В результате разрываются и внутримолекулярные водородные связи. Использование спирта в качестве дезинфицирующего средства основано именно на том, что он вызывает денатурацию белка любых присутствующих бактерий.