
- •1 Классификация и строение углеводов. Функции углеводов различных классов
- •2 Классификация аминокислот и их биохимические функции
- •3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
- •5. Строение и функции липидов
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме
- •8. Строение фосфолипидов. Роль фосфолипидов в организме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •11. Строение и функции разных классов липопротеидов
- •12. Строение желчных кислот. Их роль в метаболизме.
- •13. Биологическая роль макро- и микроэлементов
- •14. Роль кальция в метаболизме
- •15. Роль фосфопиридоксаля в метаболизме
- •16. Роль биотина в метаболизме
- •17. Биохимическая функция витамина в12
- •18. Биологическая роль пантотеновой кислоты
- •19. Биологическая роль рибофлавина
- •20. Биологическая роль никотинамида
- •21. Биохимические функции тиаминпирофосфата
- •22. Биохимические функции витамина с
- •23. Биологическая роль тетрагидрофолиевой кислоты
- •24. Биологическая роль витамина д
- •25. Биологическая роль витамина а
- •26. Биологическая роль витамина е
- •27. Биологическая роль витамина к
- •28. Механизм ферментного катализа
- •29. Строение и классификация ферментов
- •30. Конкурентное и неконкурентное ингибирование ферментов
- •31. Особенности биологического катализа
- •32. Классификация гормонов Роль гормонов в регуляции метаболизма
- •33.Гормоны надпочечеников и их биохимические функции
- •34. Гормоны гипофиза и их биологическая роль
- •35. Биологическая роль половых гормонов
- •36. Биологическая роль гормонов коры надпочечников
- •37. Биологическая роль гормонов поджелудочной железы
- •38. Гормоны щитовидной железы и их влияние на метаболизм
- •39. Механизмы передачи гормонального сигнала
- •40. Механизм передачи сигнала гормонов аминокислотой и белковой природы
- •41. Биохимическая роль вторичных мессенджеров в метаболизме
- •42. Макроэргические соединения и их роль в метаболизме
- •43. Дыхательная цепь в митохондриях
- •44. Последовательность и строение переносчиков электронов в дыхательной цепи
- •45. Процесс окислительного фосфорилирования его биологическая роль
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках
- •Механизмы действия
- •48. Антиоксидантные системы клетки и их биологическая роль
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата
- •50. Механизм реакций и биологическая роль цикла кребса
- •51. Биосинтез гликогена
- •52. Гликолиз и его биологическое значение
- •53. Глюконеогенез и его биологическая роль
- •54. Пентозофосфатный путь окисления углеводов
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных
- •56. Роль летучих жирных кислот в метаболизме жвачных животных
- •57. Строение клеточных мембран и их функции
- •58. Физико-химические свойства липипдов. Эмульгирование липидов
- •59. Механизм транспорта липидов
- •60. Биохимических механизм бета-окисления жирных кислот
- •61. Механизм синтеза жирных кислот
- •62. Биологическая роль холестерина и его производных
- •63. Синтез триглицеридов и фосфолипидов
- •64. Кетоновые тела и их роль в метаболизме
- •65. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков
- •66. Биохимические механизмы переваривания белков в желудочно-кишечном тракте
- •67. Механизмы реакций трансаминирования и дезаминирования аминокислот
- •68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования
- •69. Орнитиновый цикл
- •70. Биологические механизмы окисления нуклеотидов
- •71. Строение молекул днк
- •72. Биохимические механизмы синтеза днк
- •73. Репликация и репарация
- •74. Строение рнк. Виды Рнк. Их роль в метаболизме
- •75. Биохимические механизмы синтеза рнк
- •76. Биохимические механизмы синтеза белка
21. Биохимические функции тиаминпирофосфата
Тиаминпирофосфат (тиаминдифосфат, кокарбоксилаза) — тиаминсодержащий кофермент ряда ферментов окислительного и неокислительного декарбоксилирования α-кетокислот (пировиноградной и а-кетоглютаровой кислот) и обмене α-кетосахаров. Применяется в медицине.
В соединении с белком и ионами магния входит в состав фермента карбоксилазы, катализирующей карбоксилирование и декарбоксилирование a-кетокислот (например, в превращении пировиноградной кислоты в ацетилкофермент А). Во всех случаях происходит разрыв С—С связи, смежной с кетогруппой субстрата.
Является готовой формой кофермента, образующегося из тиамина в процессе его превращения в организме.
Может катализировать некоторые реакции без участия белкового компонента.
Реакционным центром в тиамина является углеродный атом в положении 2 тиазольного кольца. Тиазольный фрагмент тиамина является четвертичной тиазолиевой солью, кватернизованной по атому азота. Соли тиазолия, незамещённые в положении 2, способны терять протон с образованием илидов.
Такие илиды способны реагировать с карбонильными группами кетокислот и альдегидов с образованием соответствующих 2-тиазолилкарбинолов. Эти соединения являются промежуточными продуктами в различных ферментативных реакциях. Так, например, пировиноградная кислота и другие α-кетокислоты реагируют с тиаминпирофосфатом, образуя соответствующие карбинолы — продукты присоединения, которые затем быстро декарбоксилируются и расщепляются, образуя альдегиды и исходный тиаминпирофосфат.
22. Биохимические функции витамина с
Аскорби́новая кислота́ — органическое соединение, родственное глюкозе, является одним из основных веществ в человеческом рационе, которое необходимо для нормального функционирования соединительной и костной ткани. Выполняет биологические функции восстановителя и кофермента некоторых метаболических процессов, является антиоксидантом. Биологически активен только один из изомеров — L-аскорбиновая кислота, который называют витамином C.
Образование коллагена, серотонина из триптофана, образование катехоламинов, синтез кортикостероидов. Аскорбиновая кислота также участвует в превращении холестерина в желчные кислоты.
Витамин С необходим для детоксикации в гепатоцитах при участии цитохрома P450.
Витамин С сам нейтрализует супероксид-анион радикал до перекиси водорода.
Восстанавливает кубихинон и витамин Е. Стимулирует синтез интерферона, следовательно, участвует в иммуномодулировании. Переводит трёхвалентное железо в двухвалентное, тем самым способствует его всасыванию.
Тормозит гликозилирование гемоглобина, тормозит превращение глюкозы в сорбит.
23. Биологическая роль тетрагидрофолиевой кислоты
Тетрагидрофолат — это кофермент, участвующий во многих реакциях, особенно при метаболизме аминокислот и нуклеиновых кислот. Является донором одноуглеродной группы. Получает атом углерода путем образования комплекса с формальдегидом, который образуется в других реакциях.
Недостаток тетрагидрофолата вызывает анемию.
Концентрация тетрагидрофолата снижается под действием лекарственного препарата (цитостатика) метотрексата, который используют для остановки синтеза нуклеотидов.
Непосредственная функция тетрагидрофолиевой кислоты
– перенос одноуглеродных фрагментов, которые присоединяются к атомам N5 или N10:
формила – в составе N5-формил-ТГФК и N10-формил-ТГФК,
метенила – в качестве N5,N10-метенил-ТГФК,
метилена – в виде N5,N10-метилен-ТГФК,
метила – в форме N5-метил-ТГФК,
формимина – в составе N5-формимино-ТГФК.
Строение и взаимопревращение активных форм тетрагидрофолиевой кислоты
Благодаря способности переносить одноуглеродные фрагменты,
витамин:
-участвует в синтезе пуриновых оснований и тимидинмонофосфата, и, следовательно, в синтезе ДНК,
-участвует в обмене аминокислот – обратимое превращение глицина и серина, синтез метионина из гомоцистеина,
-взаимодействует с витамином В12, содействуя выполнению его функций при превращении метионина в гомоцистеин.
В кровь из кишечника поставляется только N5-метил-ТГФК и в таком виде она входит в клетку. Благодаря реакции превращения гомоцистеина в метионин метилированная форма ТГФК в клетке способна переходить в свободную ТГФК, которая уже может участвовать в других реакциях обмена. При дефиците витамина В12 данная реакция нарушается и возникает внутриклеточный дефицит витамина, хотя в крови его (в виде метил-ТГФК) может быть много. Такое явление получило название "ловушка для фолата".