- •1 Классификация и строение углеводов. Функции углеводов различных классов
- •2 Классификация аминокислот и их биохимические функции
- •3 Уровни организации белков. Типы химических связей, участвующие в формировании пространственной структуры белка
- •5. Строение и функции липидов
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме
- •8. Строение фосфолипидов. Роль фосфолипидов в организме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •11. Строение и функции разных классов липопротеидов
- •12. Строение желчных кислот. Их роль в метаболизме.
- •13. Биологическая роль макро- и микроэлементов
- •14. Роль кальция в метаболизме
- •15. Роль фосфопиридоксаля в метаболизме
- •16. Роль биотина в метаболизме
- •17. Биохимическая функция витамина в12
- •18. Биологическая роль пантотеновой кислоты
- •19. Биологическая роль рибофлавина
- •20. Биологическая роль никотинамида
- •21. Биохимические функции тиаминпирофосфата
- •22. Биохимические функции витамина с
- •23. Биологическая роль тетрагидрофолиевой кислоты
- •24. Биологическая роль витамина д
- •25. Биологическая роль витамина а
- •26. Биологическая роль витамина е
- •27. Биологическая роль витамина к
- •28. Механизм ферментного катализа
- •29. Строение и классификация ферментов
- •30. Конкурентное и неконкурентное ингибирование ферментов
- •31. Особенности биологического катализа
- •32. Классификация гормонов Роль гормонов в регуляции метаболизма
- •33.Гормоны надпочечеников и их биохимические функции
- •34. Гормоны гипофиза и их биологическая роль
- •35. Биологическая роль половых гормонов
- •36. Биологическая роль гормонов коры надпочечников
- •37. Биологическая роль гормонов поджелудочной железы
- •38. Гормоны щитовидной железы и их влияние на метаболизм
- •39. Механизмы передачи гормонального сигнала
- •40. Механизм передачи сигнала гормонов аминокислотой и белковой природы
- •41. Биохимическая роль вторичных мессенджеров в метаболизме
- •42. Макроэргические соединения и их роль в метаболизме
- •43. Дыхательная цепь в митохондриях
- •44. Последовательность и строение переносчиков электронов в дыхательной цепи
- •45. Процесс окислительного фосфорилирования его биологическая роль
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках
- •Механизмы действия
- •48. Антиоксидантные системы клетки и их биологическая роль
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата
- •50. Механизм реакций и биологическая роль цикла кребса
- •51. Биосинтез гликогена
- •52. Гликолиз и его биологическое значение
- •53. Глюконеогенез и его биологическая роль
- •54. Пентозофосфатный путь окисления углеводов
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных
- •56. Роль летучих жирных кислот в метаболизме жвачных животных
- •57. Строение клеточных мембран и их функции
- •58. Физико-химические свойства липипдов. Эмульгирование липидов
- •59. Механизм транспорта липидов
- •60. Биохимических механизм бета-окисления жирных кислот
- •61. Механизм синтеза жирных кислот
- •62. Биологическая роль холестерина и его производных
- •63. Синтез триглицеридов и фосфолипидов
- •64. Кетоновые тела и их роль в метаболизме
- •65. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков
- •66. Биохимические механизмы переваривания белков в желудочно-кишечном тракте
- •67. Механизмы реакций трансаминирования и дезаминирования аминокислот
- •68. Декарбоксилирование аминокислот. Биологическая роль продуктов декаброксилирования
- •69. Орнитиновый цикл
- •70. Биологические механизмы окисления нуклеотидов
- •71. Строение молекул днк
- •72. Биохимические механизмы синтеза днк
- •73. Репликация и репарация
- •74. Строение рнк. Виды Рнк. Их роль в метаболизме
- •75. Биохимические механизмы синтеза рнк
- •76. Биохимические механизмы синтеза белка
51. Биосинтез гликогена
Гликоген - основная форма депонирования глюкозы в клетках животных. У растений эту же функцию выполняет крахмал. В структурном отношении гликоген, как и крахмал, представляет собой разветвленный полимер из глюкозы. Однако гликоген более разветвлен и компактен. Ветвление обеспечивает быстрое освобождение при распаде гликогена большого количества концевых мономеров. Синтез и распад гликогена не являются обращением друг в друга, эти процессы происходят разными путями. Биосинтез гликогена. Гликоген синтезируется в период пищеварения (в течение 1-2 ч после приема углеводной пищи). Гликогенез особенно интенсивно протекает в печени и скелетных мышцах. В начальных реакциях образуется UDF-глюкоза (реакция 3), которая является активированной формой глюкозы, непосредственно включающейся в реакцию полимеризации (реакция 4). Эта последняя реакция катализируется гликогенсинтазой, которая присоединяет глюкозу к олигосахариду или к уже имеющейся в клетке молекуле гликогена, наращивая цепь новыми мономерами. Для подготовки и включения в растущую полисахаридную цепь требуется энергия 1 моль АТР и 1 моль UTP. Ветвление полисахаридной цепи происходит при участии фермента амило - -1,4--1,6-гликозил-трансферазы путем разрыва одной -1,4-связи и переноса олигосахаридного остатка от конца растущей цепи к ее середине с образованием в этом месте -1,6-гликозидной связи. Молекула гликогена содержит до 1 млн остатков глюкозы, следовательно, на синтез расходуется значительное количество энергии. Необходимость превращения глюкозы в гликоген связана с тем, что накопление значительного количества глюкозы в клетке привело бы к повышению осмотического давления, так как глюкоза хорошо растворимое вещество. Напротив, гликоген содержится в клетке в виде гранул, и мало растворим. Распад гликогена - гликогенолиз - происходит в период между приемами пищи.Распад гликогена. Освобождение глюкозы в виде глюкозо-1-фосфата (реакция 5) происходит в результате фосфоролиза, катализируемого фосфорилазой. Фермент отщепляет концевые остатки один за другим, укорачивая цепи гликогена. Однако этот фермент расщепляет только -1,4 гликозидные связи. Связи в точке ветвления гидролизуются ферментом амило--1,6-гликозидазой, который отщепляет мономер глюкозы в свободном виде.
52. Гликолиз и его биологическое значение
- ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Гликолиз при аэробных условиях образов – пирувата, в анаэробных - лактата. Гликолиз является основным путём катаболизма глюкозы в организме животных. Имеет большое значение для мышеч клеток, растущ тканей (опух) , т.к обеспечивает накопление энергии в отсутсвие кислорода.
Состоит из 10 последовательных реакций.
Глюкоза - глюкоза-6-фосфат – фруктоза-6-фосфат – фруктоза-1,6-бифосфат – дегидроксиацетон фасфат + глицеральдегид-3-фасфат – 1,3-дифосфоглицерат – 3 фосфоглицерат – 2 фосфоглицерат – фосфоенол пируват – пируват.
Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфорных соединений.
На первых стадиях гликолиза затрачиваются 2 молекулы АТФ (гексокиназная и фосфофрукто-киназная реакции).
На последующих образуются 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза в анаэробных условиях составляет 2 молекулы АТФ на одну молекулу глюкозы.
Большинство реакций обратимо, за исключением трех (реакций 1, 3, 10); все метаболиты находятся в фосфорилированной форме; источником фосфатной группы в реакциях фосфорилирования являются АТФ (реакции 1, 3) или неорганический фосфат (реакция 6); регенерация NAD+, являющаяся необходимым условием протекания гликолиза, происходит при аэробном гликолизе посредством дыхательной цепи. В этом случае водород транспортируется в митохондрии с помощью челночного механизма при участии переносчиков. Это происходит потому, что мембрана митоходрий непроницаема для протонов. При анаэробном гликолизе регенерации NAD+ осуществляется независимо от дыхательной цепи. В этом случае акцептором водорода от NADH является пируват, который восстанавливается в лактат; образование АТФ при гликолизе может идти двумя путями: либо субстратным фосфорилированием, когда для фосфорилирования AДФ используется энергия макроэргической связи субстрата (реакции 7, 9), либо путем окислительного фосфорилирования AДФ, сопряженного с дыхательной цепью (реакция 6).