
- •Федеральное агентство по образованию Российской Федерации
- •им. М. В. Ломоносова
- •И. А. Туторский
- •Учебное пособие
- •Москва 2004
- •И. А. Туторский
- •8. Получение дисперсных систем
- •8.1. Введение
- •8.2. Конденсационные способы образования дисперсных систем
- •Реакция обмена
- •Реакции восстановления
- •Реакция окисления
- •Гидролиз солей
- •Конденсация паров
- •Замена растворителя
- •8.3. Строение мицелл различных золей
- •Типы потенциалопределяющих ионов
- •Принципы построения формулы мицелл
- •8.4.1. Механическое диспергирование
- •8.4.2. Эффект Ребиндера и его роль в диспергировании.
- •8.4.3. Физико-химическое дробление осадков (пептизация)
- •8.5. Образование лиофильных коллоидных систем
- •9. Молекулярно-кинетические свойства коллоидных систем
- •9.1. Введение
- •9.2. Броуновское движение
- •9.2.1. Природа броуновского движения
- •9.2.2. Общенаучное значение броуновского движения
- •9.2.3. Средний сдвиг частицы
- •9.3. Диффузия
- •9.3.1. Выражения для идеальной диффузии. Первый и второй законы Фика
- •9.3.2. Градиент концентрации при диффузии
- •9.3.3. Диффузия и проницаемость
- •9.4. Седиментация и методы седиментационного анализа
- •9.4.2. Седиментационное уравнение незаряженной частицы
- •9.4.3. Ультрацентрифуга
- •9.4.4. Скоростное ультрацентрифугирование
- •9.4.5. Равновесное ультрацентрифугирование
- •10. Оптические свойства коллоидных
- •систем.
- •10.1. Явления, наблюдаемые при взаимодействии видимого света с веществом.
- •10.2. Рэлеевское рассеяние света.
- •10.3. Рассеяние малыми частицами.
- •10.4. Рассеяние большими частицами
- •10.5. Анализ уравнения Рэлея.
- •10.6. Поглощение света дисперсными системами.
- •10.7. Турбидиметрический метод определения коллоидных частиц.
- •10.7.1. Дисперсные системы, подчиняющиеся уравнению Рэлея.
- •10.7.2. Дисперсные системы, не подчиняющиеся уравнению Рэлея.
- •10.8. Световая микроскопия.
- •10.8.1. Световая микроскопия.
- •10.8.2. Темнопольная микроскопия.
- •10.8.3. Электронная микроскопия
- •Предел разрешения электронного микроскопа.
- •Взаимодействие электронов с объектом.
- •Формирование изображения в электронном микроскопе.
- •Характеристики изображения.
- •Типы электронных микроскопов.
- •Основные части электронного микроскопа и их назначение.

Рис. 10.4. Угловая зависимость интенсивности, рассеяния большой частицей.
10.5. Анализ уравнения Рэлея.
Для сферических частиц, не проводящих электрического тока, малых по сравнению с длиной волны, в разбавленном растворе справедливо соотношение, установленное Рэлеем:
|
|
3 |
|
n |
2 n |
2 |
2 |
|
V 2 |
|
|
|
|
I p |
24 |
|
1 |
|
0 |
|
|
|
|
I0 |
(10.4) |
|
|
|
|
2 |
|
2 |
|
|
4 |
|
|||||
|
|
|
n1 |
2 n0 |
|
|
|
|
|
|
|||
где n1 и n0 – показатели преломления |
дисперсной |
фазы и |
|||||||||||
дисперсионной |
среды, |
|
– |
численная |
|
концентрация, |
– длина |
волны. Это выражение справедливо для частиц диаметром 40÷70 нм,
что |
для |
видимого света |
соответствует 0,1 . Проанализируем |
уравнение Рэлея: |
|
||
1. |
Так |
как I p f ( ) |
то в разбавленных растворах можно |
|
определить численную концентрацию коллоидных частиц. |
||
|
|
|
52 |
дисперсность. Дальнейшее диспергирование, вплоть до молекул, невозможно, так как состояние с оптимальной дисперсностью более выгодно, чем состояние двух сопряженных сплошных фаз или состояние истинного раствора. По мнению Ребиндера, термодинамическая устойчивость двухфазных дисперсных систем определяется двумя условиями: достаточно низким межфазным поверхностным натяжением и быстрым его ростом с уменьшением радиуса частиц.
Наиболее типичными представителями лиофильных коллоидных систем являются растворы коллоидных ПАВ и высокомолекулярных соединений, а также водные дисперсии эмульсолов (углеводородов с большим содержанием (10-20%) мыл или мылоподобных поверхностно-активных веществ). Эмульсолы применяют в качестве смазочно-охлаждающих жидкостей (СОЖ) при холодной обработке металлов.
9. Молекулярно-кинетические свойства коллоидных систем
9.1. Введение
Молекулярно-кинетическая теория изучает законы самопроизвольного движения молекул и частиц. Причинами самопроизвольного движения частиц являются тепловое движение молекул окружающей среды или действие сил тяжести. Тепловое движение на микроуровне проявляется в форме броуновского движения, а на макроуровне - в форме диффузии или осмоса. Сила тяжести или центробежная сила является движущей силой при
седиментации частиц.
25
www.mitht.ru/e-library