Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Eviews5 / EViews5 / Docs / EViews 5 Command Ref.pdf
Скачиваний:
91
Добавлен:
23.03.2015
Размер:
5.23 Mб
Скачать

328—Appendix B. Command Reference

The last row contains statistics for the joint test. The second and fourth column of the

(k + 1) row is simply the sum of all the rows above in the corresponding column and are the χ2k statistics for the joint skewness and kurtosis tests, respectively. These joint skewness and kurtosis statistics add up to the joint Jarque-Bera statistic reported in the output table, except for the “factor=cov” option. When this option is set, the joint Jarque-Bera statistic includes all cross moments (in addition to the pure third and fourth moments). The overall Jarque-Bera statistic for this statistic is stored in the first column of the

(k + 1) row (which will be a missing value for all other options).

Examples

var var1.ls 1 6 lgdp lm1 lcpi

show var1.jbera(factor=cor,name=jb)

The first line declares and estimates a VAR. The second line carries out the residual multivariate normality test using the inverse square root of the residual correlation matrix as the factorization matrix and stores the results in a matrix named JB.

Cross-references

See Chapter 24, “Vector Autoregression and Error Correction Models”, on page 719 of the User’s Guide for a discussion of the test and other VAR diagnostics.

kdensity

Series View

 

 

Kernel density plots. Displays nonparametric kernel density estimates of the specified series.

Syntax

 

Series View:

series_name.kdensity(options)

Options

 

 

 

 

 

k=arg

Kernel type: “e” (Epanechnikov), “r” (Triangular), “u”

 

(default=“e”)

(Uniform), “n” (Normal–Gaussian), “b” (Biweight–

 

Quartic), “t” (Triweight), “c” (Cosinus).

 

 

 

 

 

 

s (default)

Automatic bandwidth (Silverman).

 

 

 

 

b=number

Specify a number for the bandwidth.

 

 

 

 

b

Bracket bandwidth.

 

 

 

 

integer

Number of points to evaluate.

 

(default=100)

 

 

 

 

kerfit—329

x

Exact evaluation of kernel density.

 

 

o=arg

Name of matrix to hold results of kernel density compu-

 

tation. The first column of the matrix contains the eval-

 

uation points and the remaining columns contain the

 

kernel estimates.

 

 

p

Print the kernel density plot.

Examples

lwage.kdensity(k=n)

plots the kernel density estimate of LWAGE using a normal kernel and the automatic bandwidth selection.

Cross-references

See “Kernel Density” on page 394 of the User’s Guide for a discussion of kernel density estimation.

kerfit

Group View

 

 

Fits a kernel regression of the second series in the group (vertical axis) against the first series in the group (horizontal axis).

Syntax

 

Group View:

group_name.kerfit(options)

Options

 

 

 

 

 

k=arg

Kernel type: “e” (Epanechnikov), “r” (Triangular), “u”

 

(default=“e”)

(Uniform), “n” (Normal–Gaussian), “b” (Biweight–

 

 

Quartic), “t” (Triweight), “c” (Cosinus).

 

 

 

 

b=number

Specify a number for the bandwidth.

 

 

 

 

b

Bracket bandwidth.

 

 

 

 

integer

Number of grid points to evaluate.

 

(default=100)

 

 

 

 

 

x

Exact evaluation of the polynomial fit.

 

 

 

 

d=integer

Degree of polynomial to fit. Set “d=0” for Nadaraya-

 

(default=1)

Watson regression.

330—Appendix B. Command Reference

s=name

Save fitted series.

 

 

p

Print the kernel fit plot.

Examples

group gg weight height

gg.kerfit(s=w_fit, 200)

Fits a kernel regression of HEIGHT on WEIGHT using 200 points and saves the fitted series as W_FIT.

Cross-references

See “Scatter with Kernel Fit” on page 403 of the User’s Guide for a discussion of kernel regression.

See also linefit (p. 337), nnfit (p. 372).

label

Object View | Object Proc

 

 

Display or change the label view of the object, including the last modified date and display name (if any).

As a procedure, label changes the fields in the object label.

Syntax

Object View:

object_name.label

Object Proc:

object_name.label(options) text

Options

 

To modify the label, you should specify one of the following options along with optional text. If there is no text provided, the specified field will be cleared:

cClears all text fields in the label.

dSets the description field to text.

s

Sets the source field to text.

 

 

u

Sets the units field to text.

 

 

r

Appends text to the remarks field as an additional line.

 

 

p

Print the label view.

laglen—331

Examples

The following lines replace the remarks field of LWAGE with “Data from CPS 1988 March File”:

lwage.label(r)

lwage.label(r) Data from CPS 1988 March File

To append additional remarks to LWAGE, and then to print the label view:

lwage.label(r) Log of hourly wage

lwage.label(p)

To clear and then set the units field, use:

lwage.label(u) Millions of bushels

Cross-references

See “Labeling Objects” on page 80 of the User’s Guide for a discussion of labels.

See also displayname (p. 276).

laglen

Var View

 

 

VAR lag order selection criteria.

Syntax

 

Var View:

var_name.laglen(m, options)

You must specify the maximum lag order m for which you wish to test.

Options

vname=arg Save selected lag orders in named vector. See below for a description of the stored vector.

mname=arg Save lag order criteria in named matrix. See below for a description of the stored matrix.

p

Print table of lag order criteria.

 

 

The “vname=” option stores a vector with 5 rows containing the selected lags from the following criteria: sequential modified LR test (row 1), final prediction error (row 2), Akaike information criterion (row 3), Schwarz information criterion (row 4), HannanQuinn information criterion (row 5).

Соседние файлы в папке Docs