Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Eviews5 / EViews5 / Docs / EViews 5 Command Ref.pdf
Скачиваний:
91
Добавлен:
23.03.2015
Размер:
5.23 Mб
Скачать

Equation—157

Equation

Equation object. Equations are used for single equation estimation, testing, and forecasting.

Equation Declaration

equation ...............

declare equation object (p. 286).

To declare an equation object, enter the keyword equation, followed by a name:

equation eq01

and an optional specification:

equation r4cst.ls r c r(-1) div

equation wcd.ls q=c(1)*n^c(2)*k^c(3)

Equation Methods

arch......................

autoregressive conditional heteroskedasticity (ARCH and GARCH)

 

(p. 206).

binary...................

binary dependent variable models (includes probit, logit, gompit)

 

models (p. 222).

censored ...............

censored and truncated regression (includes tobit) models

 

(p. 238).

count....................

count data modeling (includes poisson, negative binomial and

 

quasi-maximum likelihood count models) (p. 258).

gmm.....................

generalized method of moments (p. 310).

logit......................

logit (binary) estimation (p. 344).

ls..........................

linear and nonlinear least squares regression (includes weighted

 

least squares and ARMAX) models (p. 345).

ordered .................

ordinal dependent variable models (includes ordered probit,

 

ordered logit, and ordered extreme value models) (p. 378).

probit ...................

probit (binary) estimation (p. 410).

tsls .......................

linear and nonlinear two-stage least squares (TSLS) regression

 

models (includes weighted TSLS, and TSLS with ARMA errors)

 

(p. 515).

Equation Views

archtest.................

LM test for the presence of ARCH in the residuals (p. 210).

arma.....................

Examine ARMA structure of estimated equation (p. 214).

auto......................

Breusch-Godfrey serial correlation Lagrange Multiplier (LM) test

 

(p. 216).

158—Appendix A. Object, View and Procedure Reference

cellipse ................

Confidence ellipses for coefficient restrictions (p. 236).

chow ...................

Chow breakpoint and forecast tests for structural change (p. 241).

coefcov ................

coefficient covariance matrix (p. 244).

correl ...................

correlogram of the residuals (p. 256).

correlsq................

correlogram of the squared residuals (p. 257).

derivs ..................

derivatives of the equation specification (p. 273).

fixedtest ...............

test significance of estimates of fixed effects (p. 299).

garch ...................

conditional standard deviation graph (only for equations estimated

 

using ARCH) (p. 308).

grads ...................

examine the gradients of the objective function (p. 315).

hist ......................

histogram and descriptive statistics of the residuals (p. 322).

label ....................

label information for the equation (p. 330).

means..................

descriptive statistics by category of the dependent variable (only

 

for binary, ordered, censored and count equations) (p. 367).

output..................

table of estimation results (p. 380).

predict .................

prediction (fit) evaluation table (only for binary and ordered equa-

 

tions) (p. 408).

ranhaus ...............

Hausman test for correlation between random effects and regres-

 

sors (p. 413).

representations.....

text showing specification of the equation (p. 417).

reset ....................

Ramsey’s RESET test for functional form (p. 420).

resids ...................

display, in tabular form, the actual and fitted values for the depen-

 

dent variable, along with the residuals (p. 422).

results..................

table of estimation results (p. 423).

rls........................

recursive residuals least squares (only for non-panel equations

 

estimated by ordinary least squares, without ARMA terms)

 

(p. 423).

testadd .................

likelihood ratio test for adding variables to equation (p. 500).

testdrop ...............

likelihood ratio test for dropping variables from equation (p. 503).

testfit ...................

performs Hosmer and Lemeshow and Andrews goodness-of-fit

 

tests (only for equations estimated using binary) (p. 505).

wald ....................

Wald test for coefficient restrictions (p. 530).

white ...................

White test for heteroskedasticity (p. 542).

Equation Procs

displayname.........

set display name (p. 276).

fit ........................

static forecast (p. 297).

forecast ................

dynamic forecast (p. 300).

 

Equation—159

 

 

makederivs ...........

make group containing derivatives of the equation specification

 

(p. 351).

makegarch............

create conditional variance series (only for ARCH equations)

 

(p. 352).

makegrads ............

make group containing gradients of the objective function

 

(p. 353).

makelimits............

create vector of estimated limit points (only for ordered models)

 

(p. 357).

makemodel...........

create model from estimated equation (p. 358).

makeregs ..............

make group containing the regressors (p. 359).

makeresids ...........

make series containing residuals from equation (p. 359).

updatecoefs...........

update coefficient vector(s) from equation (p. 521).

Equation Data Members

Scalar Values

@aic.....................

Akaike information criterion.

@coefcov(i,j) .......

covariance of coefficient estimates i and j.

@coefs(i)..............

i-th coefficient value.

@dw ....................

Durbin-Watson statistic.

@f........................

F-statistic.

@hq .....................

Hannan-Quinn information criterion.

@jstat...................

J-statistic — value of the GMM objective function (for GMM).

@logl ...................

value of the log likelihood function.

@meandep ...........

mean of the dependent variable.

@ncoef.................

number of estimated coefficients.

@r2......................

R-squared statistic.

@rbar2.................

adjusted R-squared statistic.

@regobs ...............

number of observations in regression.

@schwarz ...........

Schwarz information criterion.

@sddep ................

standard deviation of the dependent variable.

@se......................

standard error of the regression.

@ssr.....................

sum of squared residuals.

@stderrs(i) ...........

standard error for coefficient i.

@tstats(i) .............

t-statistic value for coefficient i.

c(i) .......................

i-th element of default coefficient vector for equation (if applica-

 

ble).

160—Appendix A. Object, View and Procedure Reference

Vectors and Matrices

@coefcov .............

covariance matrix for coefficient estimates.

@coefs.................

coefficient vector.

@stderrs ..............

vector of standard errors for coefficients.

@tstats ................

vector of t-statistic values for coefficients.

Equation Examples

To apply an estimation method (proc) to an existing equation object:

equation ifunc

ifunc.ls r c r(-1) div

To declare and estimate an equation in one step, combine the two commands:

equation value.tsls log(p) c d(x) @ x(-1) x(-2) equation drive.logit ifdr c owncar dist income equation countmod.count patents c rdd

To estimate equations by list, using ordinary and two-stage least squares:

equation ordinary.ls log(p) c d(x)

equation twostage.tsls log(p) c d(x) @ x(-1) x(-2)

You can create and use other coefficient vectors:

coef(10) a

coef(10) b

equation eq01.ls y=c(10)+b(5)*y(-1)+a(7)*inc

The fitted values from EQ01 may be saved using,

series fit = eq01.@coefs(1) + eq01.@coefs(2)*y(-1) + eq01.@coefs(3)*inc

or by issuing the command:

eq01.fit fitted_vals

To perform a Wald test:

eq01.wald a(7)=exp(b(5))

You can save the t-statistics and covariance matrix for your parameter estimates:

vector eqstats=eq01.@tstats

matrix eqcov=eq01.@coefcov

Соседние файлы в папке Docs