Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сигнальный экземпляр.doc
Скачиваний:
386
Добавлен:
19.03.2015
Размер:
12.02 Mб
Скачать

2.2. Образование вращающего электромагнитного момента в асинхронной электрической машине.

Трехфазный переменный ток, питающий обмотки статора в режиме электродвигателя, создает вращающееся магнитное поле (подробнее см. приложение), магнитные силовые линии которого пересекают проводники обмотки неподвижного ротора. На рис. 5 принято вращение магнитного поля по часовой стрелке. По закону электромагнитной индукции в проводниках ротора возникает электродвижущая сила, направление

Рис. 5. Образование вращающего

момента.

которой определяется правилом правой

руки. В короткозамкнутой обмотке

начинает протекать электрический ток. На рис. 5 в левом проводнике направление тока обозначено «х», что означает протекание тока «от наблюдателя» (за плоскость рисунка), в правом проводнике ток протекает в противоположную сторону (обозначено «точкой»). По правилу левой руки

определяется направление действия сил на проводники (обозначены F на рис. 5). Под действием пары сил F возникает вращающий момент, направленный в сторону вращения поля статора и ротор начинает вращение. Таким образом, статорный ток вызывает или индуктирует ток ротора, поэтому очень часто асинхронные машины называют индукционными.

Скорость вращения магнитного потока, называется синхронной скоростью двигателя и определяется как

n1=60f/p об/мин,

где: f – частота сети переменного трехфазного тока;

р – число пар полюсов.

Скорость вращения ротора n2 всегда будет отставать от синхронной скорости двигателя. Разность скоростей называется скольжением S и выражается в относительных единицах или в процентах:

S = (n1 - n2)/ n1

Скольжение – одна из важных величин, характеризующих работу асинхронного двигателя.

Во время пуска при неподвижном роторе скольжение максимальное, вращающееся магнитное поле пересекает обмотку ротора с большой скоростью и индуктирует в ней значительную ЭДС, которая вызывает значительный пусковой ток ротора. Соответственно, и в обмотке статора также возникает значительный пусковой ток. Вращающий момент, развиваемый двигателем, покрывает собственные механические потери и момент внешней нагрузки. С ростом скорости ротора скольжение и токи уменьшаются. С ростом внешней нагрузки скольжение растет, что вызывает увеличение токов и вращающего момента.

Для регулирования мощности с целью получения необходимой тяговой характеристики на вагонах метрополитена применяется регулятор частоты и питающего напряжения.

Для изменения направления вращения ротора необходимо изменить направление вращения магнитного поля, создаваемого обмотками. Для этого достаточно изменить чередование фаз трехфазного тока.

3. Устройство асинхронного тягового двигателя. Технические данные.

Асинхронные двигатели для вагонов метрополитена, выпускаемые разными заводами-изготовителями, конструктивно аналогичны, т.к. созданы на основе двигателя ТАД 280М 4У2 производства АЭК «Динамо». Двигатели имеют принципиально одинаковое устройство: габариты, конструкционные

размеры, обмоточные данные и др.

Рис. 6. Тяговые электродвигатели. Общий вид.

Устройство асинхронного тягового двигателя рассмотрим на примере двигателя ДТА 170 У2 производства АО «Рижский электромашинострои-тельный завод» (принципиальные отличия будут отмечены как примечание).

Трехфазные асинхронные тяговые двигатели ДТА 170 У2 предназначе-ны для установки на вагонах метрополитена для приведения вагона в движение и создания тормозной силы при электрическом торможении. Двигатель является составной частью асинхронного тягового электропривода и рассчитан для питания от инвертора напря­жения.

Двигатель ДТА 170 У2 - самовентилируемый четырехполюсный двигатель с короткозамкнутым ротором.

В обозначении двигателя: ДТА - двигатель тяговый асинхронный; 170 –мощность в кВт; У2 – климатическое исполнение и категория размещения.