Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

electrodynamics / Companion to J.D. Jackson's Classical Electrodynamics 3rd ed. - R. Magyar

.pdf
Скачиваний:
101
Добавлен:
19.03.2015
Размер:
1.02 Mб
Скачать

Problem 3.3

A think, flat, circular, conducting disc of radius R is located in the x-y plane with its center at the origin and is maintained at a fixed potential Φ. With the information that the charge density of the disc at fixed potential is proportional to (R2 − ρ2)12 , where ρ is the distance out from the center of the disk. . .

Note ρ is used where I usually use r. a. Find the potential for r > R.

For a charged ring at z = 0 on the r-φ plane, Jackson derived the following:

Φ(r, θ) =

 

L=0 r rL

L(0) L(cos

)

 

 

q

 

ρL

 

 

 

 

 

 

L+1

P

P

θ

, r R

 

q PL=0

 

PL(0)PL(cos θ)

, r < R

 

ρL+1

But

 

 

P

2

(L+1)!!

 

 

 

PL(0) =

 

0

 

 

 

 

 

 

(

1)

L

(L+1)L!!

= f (L) , f or L even

We can replace L by 2ℓ because every other term vanishes.

Since σ (R2 − ρ2)12 on the disk, the total charge on the disk is

Q = Z0

R

2πκρ

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 − ρ2

 

Let u = R2 − ρ2, du = −2ρdρ, so

 

 

 

 

 

 

 

0

πκ

 

1

 

 

2

 

Q = − ZR2

 

du = 2πκu 2

|0R

 

= 2πκR

u

 

And κ = 2πRQ . Now, we solve for a disk made up of infinitely many infinitesimally small rings. Each contributes to the potential

X

ρ2ℓ

δΦ(r, θ) = σ ℓ=0 r2ℓ+1 f (2ℓ)P2ℓ(cos θ)dA, r ≥ R

where f (2ℓ) = P2ℓ(0). And integrating over the disk gives the total potential.

Φ(r, θ) = Z

κ(R2 − ρ2)

1

ρ2ℓ

2

ℓ=0 r2ℓ+1 f (2ℓ)P2ℓ(cos θ)ρdρdφ

 

 

 

 

X

 

 

 

 

= 2πκ X Z0

R

 

 

1

ρ2ℓ

(R2 − ρ2)

2

 

f (2ℓ)P2ℓ(cos θ)ρdρ

r2ℓ+1

17

Consider the integral over ρ.

R

 

ρ2ℓ+1

1

 

R ρ2ℓ+1

Z0

 

dρ =

 

Z0

 

 

 

 

 

R

q

 

 

 

R2 − ρ2

 

1 −

ρ2

 

 

 

R2

 

Let Rρ = sin θ, dρ = R cos θdθ.

 

1

Z0

π

 

(R)2ℓ+1 sin2ℓ+1 θ

 

 

 

 

 

2ℓ!

I1 =

2

R

cos θdθ = R2ℓ+1

R

 

 

 

 

cos θ

(2ℓ + 1)!!

Using

 

 

 

 

 

π

 

 

 

 

 

2ℓ!

 

 

 

 

 

 

Z0

 

 

 

 

 

 

 

 

 

 

 

2

sin2ℓ+1 θdθ =

 

 

 

 

 

 

 

 

(2ℓ + 1)!!

 

 

So

 

 

 

 

 

 

 

2ℓ!

 

 

R2ℓ+1

 

 

Φ = 2πκ X

 

 

 

 

 

f (2ℓ)

 

P2ℓ(cos θ)

 

(2ℓ + 1)!!

r2ℓ+1

but we know f (2ℓ).

 

4Q

 

(2ℓ + 1)!! 2ℓ!

 

R

2ℓ

 

R

 

Φ =

 

X (−1)

 

 

 

 

 

 

 

 

 

P2ℓ(cos θ)

R

(2ℓ + 1)(2ℓ)!! (2ℓ + 1)!!

r

r

Since (2ℓ)!! = 2ℓ!,

Φ =

4Q

X (−1)

1

 

R

 

2ℓ

 

R

P2ℓ(cos θ) , r ≥ R

 

 

 

 

 

R

2ℓ + 1

r

 

r

The potential on the disk at the origin is V.

 

 

 

 

 

 

 

 

 

 

R

σρdρdφ = Z

 

2Q

 

 

 

 

2πρ

 

 

 

 

 

V = Z0

Z0

 

 

 

 

 

|ρ|

 

 

 

 

 

 

 

 

 

πR

 

 

 

 

 

 

 

 

R2 − ρ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using R

 

dx

= sin

1

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2−x2

 

 

|a|

,

 

 

 

|R|!

|0R =

 

 

 

 

 

 

 

 

 

 

 

 

 

V = πR 2π sin−1

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

2Q

 

x

 

 

 

 

 

 

 

2Qπ

 

And κ = 2Q =

 

V

. Then,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

πR

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2V

 

R

 

 

1

 

 

 

 

R

 

 

 

 

 

 

 

 

 

Φ =

 

 

 

 

 

X

(−1)

 

 

 

 

 

P2ℓ(cos θ), r ≥ R

 

 

 

 

π

r

2ℓ + 1

r

 

18

A similar integration can be carried out for r < R.

 

2πQ

 

4Q

X (−1)

1

 

r

 

2ℓ

 

r

P2ℓ(cos θ) , r ≤ R

Φ =

 

 

 

 

 

 

 

 

R

R

2ℓ + 1

R

 

R

b. Find the potential for r < R.

I can’t figure out what I did here. I’ll get back to this. c. What is the capacitance of the disc?

C = Q , but from part a Q = 2V R

so

 

 

 

 

V

π

 

 

 

 

 

 

 

2V R

1

 

2R

 

C =

 

 

 

 

=

 

 

 

π

V

π

19

Problem 3.9

A hollow right circular cylinder of radius b has its axis coincident with the z axis and its ends at z = 0 and z = L. The potential on the end faces is zero while the potential on the cylindrical surface is given by Φ(φ, z). Using the appropriate separation of variables in cylindrical coordinates, find a series solution for the potential everywhere inside the cylinder.

V = 0 at z = 0, L. Because of cylindrical symmetry, we will try cylindrical coordinates. Then, we have

2

Φ = 0 →

1 ∂ 1 ∂Φ

!

+

1 ∂2 Φ

+

2Φ

= 0

r

 

∂r

 

r

 

∂r

r2

 

∂φ2

 

∂z2

Try Φ(r, φ, z) = R(r)Z(z)Q(φ). Separating the Laplace equation in cylindrical coordinates, we find three di erential equations which must be satisfied.

2Z − k2Z = 0 ∂z2

has the solution

Z = A sin(kz) + B cos(kz)

The solution must satisfy boundary conditions that Φ = 0 at z = 0, L. Therefore, B must vanish.

Z = A sin(kz)

where k = L .

Similarly, we have for Q

2 Q − m2Q = 0 ∂φ2

which has the solution

Q = C sin(mφ) + D cos(mφ)

m must be an integer for Q to be single valued.

The radial part must satisfy the frightening equation. Note the signs. This is not the typical Bessel equations, but have no fear.

2 R

+

1 ∂R

− 1 +

m2

! R = 0

∂x2

x

 

∂x

x2

20

where x = kr. The solutions are just modified Bessel functions.

R(x) = EIm(x) + F Km(x)

m must be an integer for R to be single valued. Im and Km are related to other Bessel and Neumann functions via

Im(kr) = i−mJm(ikr)

Km(kr) = π2 im+1Hm(1)(ikr)

The potential is finite at r = 0 so

Hm(1)(0) = Jm(0)

+ iNm(0) = 0

 

 

 

But Km 6= 0 so F = 0.

 

 

 

 

We can now write Φ in a general form.

 

 

 

 

Φ = RZQ = X A sin

 

 

 

z (C sin(mφ) + D cos(mφ)) EIm

 

 

r

L

L

Let A and E be absorbed into C and D.

∞ ∞

 

 

Φ = m=0 n=0 sin

L z Im

L r (Cmn sin(mφ) + Dmn cos(mφ))

X X

 

 

 

 

 

 

Now, we match boundary conditions. At r = b, Φ(φ, z) = V (φ, z). So

Φ(φ, z) = m,n sin

 

L z Im

L b (Cmn sin(mφ) + Dmn cos(mφ)) = V

X

 

 

 

 

 

The Im L b are just a set of constants so we’ll absorb them into Cmnand Dmnfor the time being. The coe cients, Cmnand Dmn, can be obtained via Fourier analysis.

 

2L

 

Cmn

= κ Z0

Z0

Φ(φ, z) sin

 

z sin (mφ) dφdz

L

 

2L

Φ(φ, z) sin

Dmn

= κ Z0

Z0

 

z cos (mφ) dφdz

L

21

κ is determined by orthonormality of the various terms.

 

 

 

 

 

 

 

 

 

2L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

κ−1 = Z0

sin2

 

 

z dz Z0

 

 

sin2 (mφ) dφ =

 

 

 

L

2

 

 

 

 

 

πnm

"

2

 

4

 

 

 

# |x2πn=0 × "

 

4

 

 

# |x2πm=0

 

 

 

 

L

 

 

x

 

sin(2x)

 

 

 

 

x

 

 

sin(2x)

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So κ =

 

. Finally, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

2L

 

 

 

 

 

 

 

 

Cmn =

 

 

 

 

 

Z0

 

 

Z0

Φ(φ, z) sin

 

z sin (mφ) dφdz

 

Im

b

 

 

 

L

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

2L

 

 

 

 

 

 

 

 

Dmn =

 

 

 

 

 

Z0

 

 

Z0

Φ(φ, z) sin

 

z cos (mφ) dφdz

 

Im

b

 

 

 

L

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Problem 3.14

A line charge of length 2d with a total charge of Q has a linear charge density varying as (d2 −z2), where z is the distance from the midpoint. A grounded, conducting, spherical shell of inner radius b > d is centered at the midpoint of the line charge.

a. Find the potential everywhere inside the spherical shell as an expansion in Legendre polynomials.

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q = Z−d κ(d2

− z2)dz =

 

κd3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

so κ =

3Q

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4d

 

 

 

 

 

 

 

 

3Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ =

(d2 − z2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4d3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For use later, we will write this in spherical coordinates.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3Q

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ(r, θ, φ) =

 

 

 

(d2

− r2)

 

 

δ(cos2 θ − 1)

 

 

 

 

 

 

 

 

 

 

 

4d3

πr2

 

 

 

 

 

 

 

 

For the inside of the spherical shell, the Green’s function is:

 

 

 

 

 

 

∞ ℓ

 

 

Yℓm, φ)Yℓm(θ, φ)

 

 

 

 

 

 

a2ℓ+1

1

 

 

r

!

G(x, x) = 4π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r<

 

 

 

!

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

a

)

2ℓ+1

rℓ+1

 

rℓ+1

b2ℓ+1

 

 

ℓ=0 m= ℓ (2ℓ + 1) 1 (

b

 

 

 

 

 

 

 

<

 

 

 

>

 

 

 

 

 

 

X X

 

 

 

 

 

h

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where a and b denote the inner and outer radii. Here a = 0 so

 

 

 

 

 

 

 

 

 

 

Yℓm, φ)Yℓm(θ, φ)

 

 

 

 

 

1

 

 

 

 

r

 

 

 

 

 

G(x, x) = 4π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b2ℓ+1 !

 

 

 

 

ℓ=0 m=

(2ℓ + 1)

 

 

 

 

< r>ℓ+1

 

 

 

 

X X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

because of azimuthal symmetry on m = 0 terms contribute.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

r

 

 

 

 

 

 

G(x, x) = 4π

P(cos θ)P(cos θ)r<

 

 

 

>

!

 

 

 

 

 

 

 

r>ℓ+1

b2ℓ+1

 

 

 

 

 

 

 

 

 

 

ℓ=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The potential can be obtained through Green’s functions techniques.

 

 

 

 

Φ(x) =

1

 

Z

d3xρ(x)G(x, x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4πǫ0

 

 

 

 

 

 

 

 

 

 

 

23

And explicitly

 

 

 

 

 

 

 

 

 

 

Φ =

1

 

 

 

 

3Q

 

 

 

 

 

 

4πǫ0 Z

d(cos θ)r′2drd3r2 (d2−r′2)δ(cos2 θ−1)

ℓ=0 P(cos θ)P(cos θ)r<

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

The integrations over φand θare easy and fun!

 

 

 

 

 

 

3Q

 

 

 

 

 

b

 

1

 

r

!

Φ =

 

 

(P(1)+P(−1))P(cos θ)

 

drr′2(d2−r′2)r<

 

>

16πǫ d3

0

rℓ+1

b2ℓ+1

 

0

 

ℓ=0

 

 

 

Z

 

 

>

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

Integration over rmust be done over several regions: r < d and r> r, r < d and r< r, r > d and r> r, and r > d and r< r. When the smoke clears, we find:

 

 

 

 

 

 

3Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

Φ(r, θ, φ) =

16πǫ0d3

 

 

 

(P(1) + P(−1))P(cos θ)I(r, ℓ)

 

 

 

 

 

 

 

 

 

 

 

 

 

ℓ=0

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

r

 

 

 

rℓ+1

rℓ+3

I(r, ℓ) =

 

 

 

 

!

d2

 

 

 

!

 

rℓ+1

b2ℓ+1

ℓ + 1

ℓ + 3

 

d2 ℓ

 

 

 

 

d2 ℓ

 

 

 

 

dℓ+3

 

 

 

 

 

 

dℓ+3

+r"

 

 

+

 

 

 

 

 

 

 

 

#

 

2

(ℓ + 1)b2ℓ+1

(ℓ + 3)b2ℓ+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d2

 

 

 

 

r2 ℓ

 

 

 

 

d2rℓ+1

 

 

 

 

 

 

rℓ+3

−r"

 

+

 

 

 

 

 

 

 

 

#

ℓr

 

 

 

2

(ℓ + 1)b2ℓ+1

(ℓ + 3)b2ℓ+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Presumably, this can be reduced, but I never got around to that. For r < d and

1 r>! r>ℓ+1 b2ℓ+1

Φ(r, θ, φ) =

3Q

1

 

r

!

2dℓ+3

!

16πǫ0d3

ℓ=0(P(1)+P(−1))P(cos θ)

rℓ+1

b2ℓ+1

(ℓ + 1)(ℓ + 3)

 

 

X

 

 

 

 

 

 

The term P(1) + P(−1) is zero for odd ℓ and 2P(1) for even ℓ. So we can rewrite our answer.

b.Calculate the surface charge density induced on the shell.

σ= −ǫ0 Φ · nˆ

σ = −

3Q

(2ℓ + 1) 2

 

d

!

ℓ=0 P(cos θ)

(ℓ + 1)(ℓ + 3) b2

 

b

 

 

 

X

 

 

 

 

 

 

 

24

c. Discuss your answers to parts a and b in the limit d << b.

d

 

 

 

 

 

 

 

 

 

except when ℓ = 0. Then,

In this limit, the term b

σ = −

3Q

 

1 2

 

Q

 

P0

(cos θ)

 

 

 

= −

 

3 b2

4πb2

This is what we would have expected if a point charge were located at the origin and the sphere were at zero potential. When d << b, r will most likely be greater than d for the region of interest so it will su ce to take the limit of the second form for Φ. Once again, only ℓ = 0 terms will contribute.

!

Qb − r

Φ = 4πǫ0 br

This looks like the equation for a spherical capacitor’s potential as it should!

25

Problem 4.6

A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric electric field with a gradient(∂E∂zz )0 along the z axis at the position of the nucleus.

a. Find the energy of the quadrupole interaction.

Recall that the quadrapole tensor is

Z

Qij = 3xixj − r′2δij ρ(~r)dV

For the external field, Gauss’s law tells us that a vanishing charge density

 

 

~

 

 

∂Ez

∂Ex

 

∂Ey

 

 

 

 

 

means ·E = 0.

 

 

+

 

 

 

+

 

 

= 0. The problem is cylindrically symmetric

 

∂z

∂x

∂y

 

∂Ex

 

∂Ey

1

∂Ez

 

 

 

 

 

 

 

 

 

 

 

so

 

=

 

= −2

 

.

 

 

 

 

 

 

 

 

 

 

∂x

∂y

∂z

 

 

 

 

 

 

 

 

According to Jackson’s equation 4.23, the energy for a quadrapole is

 

 

 

 

 

 

 

 

 

 

1

 

3

3

 

 

3xixj − r2

δij ρ

∂Ej

 

 

 

 

 

W = −6 i=1 j=1 Z

∂xi d3x

 

 

 

 

 

 

 

 

 

 

 

 

 

X X

 

 

 

 

 

When i =6 j, there is no contribution to the energy. You can understand this

 

 

 

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

by recalling that the curl of E is zero for static configurations, i.e. ×E = 0.

When xi

= z and xj = z, the integral is clearly qQ33 = qQnucleus, and the

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

q Q ∂Ez

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

energy contribution is

3

 

 

= −6

1

 

∂z

.

 

Jackson hints on page 151 that in

nuclear physics Q11 = Q22 =

 

 

 

Q .

 

For x or x

equals x or y, W =

1

1

q

∂Ez

 

 

 

q

 

 

 

∂Ez

2

 

 

 

33

 

 

 

 

 

 

 

 

 

 

i

 

 

j

 

 

 

 

(−2 )(−

2 )(−6 Q

 

) = −

 

 

Q

 

 

 

. Thus,

 

 

 

 

 

 

 

 

 

 

 

 

∂z

24

∂z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

∂E

 

 

 

 

 

q

 

∂E

 

 

 

 

W = −

 

 

+

 

 

qQ

 

 

 

 

 

 

 

z

!

 

= −

 

 

Q

 

z

!

 

 

 

 

6

12

 

 

 

∂z

4

∂z

q.e.d.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Calculate (∂Ez )0 in units of

 

 

 

q

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4πǫ0a

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4πǫ02

We are given Q = 2 ×10−28 m2, W/h = 10 MHz, a0 =

 

me q2

= 0.529 ×10−10

m,

q

 

 

= 9.73 × 10

2

N/(mC), and from part a,

 

 

 

 

 

 

 

4πǫ0a03

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

 

 

 

∂E

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W = −

 

Q

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

∂z

 

 

 

 

 

 

 

 

 

 

 

∂E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solve for ∂zz ,

 

 

 

 

 

 

 

∂zz

! =

 

h

 

 

q

!

1 Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂E

 

 

 

 

 

W

 

 

 

 

h

 

 

4 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26