
electrodynamics / Companion to J.D. Jackson's Classical Electrodynamics 3rd ed. - R. Magyar
.pdf
Problem 3.3
A think, flat, circular, conducting disc of radius R is located in the x-y plane with its center at the origin and is maintained at a fixed potential Φ. With the information that the charge density of the disc at fixed potential is proportional to (R2 − ρ2)− 12 , where ρ is the distance out from the center of the disk. . .
Note ρ is used where I usually use r′. a. Find the potential for r > R.
For a charged ring at z = 0 on the r-φ plane, Jackson derived the following:
Φ(r, θ) = |
|
L=0 r rL |
L(0) L(cos |
) |
≥ |
|||||
|
|
q |
∞ |
|
ρL |
|
|
|
||
|
|
|
L+1 |
P |
P |
θ |
, r R |
|||
|
q PL∞=0 |
|
PL(0)PL(cos θ) |
, r < R |
||||||
|
ρL+1 |
|||||||||
But |
|
|
P |
2 |
(L+1)!! |
|
|
|
||
PL(0) = |
|
0 |
|
|
|
|
||||
|
|
( |
1) |
L |
(L+1)L!! |
= f (L) , f or L even |
−
We can replace L by 2ℓ because every other term vanishes.
Since σ (R2 − ρ2)− 12 on the disk, the total charge on the disk is
Q = Z0 |
R |
√ |
2πκρ |
|
|
|
|
|||
|
|
|
|
|
||||||
|
|
dρ |
|
|||||||
|
R2 − ρ2 |
|
||||||||
Let u = R2 − ρ2, du = −2ρdρ, so |
|
|
|
|
|
|
|
|||
0 |
πκ |
|
1 |
|
|
2 |
|
|||
Q = − ZR2 |
√ |
|
du = 2πκu 2 |
|0R |
|
= 2πκR |
||||
u |
|
And κ = 2πRQ . Now, we solve for a disk made up of infinitely many infinitesimally small rings. Each contributes to the potential
X
ℓ ρ2ℓ
δΦ(r, θ) = σ ℓ=0 r2ℓ+1 f (2ℓ)P2ℓ(cos θ)dA, r ≥ R
where f (2ℓ) = P2ℓ(0). And integrating over the disk gives the total potential.
Φ(r, θ) = Z |
κ(R2 − ρ2)− |
1 |
ℓ |
ρ2ℓ |
||||
2 |
ℓ=0 r2ℓ+1 f (2ℓ)P2ℓ(cos θ)ρdρdφ |
|||||||
|
|
|
|
X |
|
|
|
|
= 2πκ X Z0 |
R |
|
|
1 |
ρ2ℓ |
|||
(R2 − ρ2)− |
2 |
|
f (2ℓ)P2ℓ(cos θ)ρdρ |
|||||
r2ℓ+1 |
17

Consider the integral over ρ.
R |
|
ρ2ℓ+1 |
1 |
|
R ρ2ℓ+1 |
||||||
Z0 |
√ |
|
dρ = |
|
Z0 |
|
|
|
|
|
dρ |
R |
q |
|
|
|
|||||||
R2 − ρ2 |
|
1 − |
ρ2 |
|
|||||||
|
|
R2 |
|
Let Rρ = sin θ, dρ = R cos θdθ.
|
1 |
Z0 |
π |
|
(R)2ℓ+1 sin2ℓ+1 θ |
|
|
|
|
|
2ℓℓ! |
||||
I1 = |
2 |
R |
cos θdθ = R2ℓ+1 |
||||||||||||
R |
|
|
|
|
cos θ |
(2ℓ + 1)!! |
|||||||||
Using |
|
|
|
|
|
π |
|
|
|
|
|
2ℓℓ! |
|
||
|
|
|
|
|
Z0 |
|
|
|
|
|
|
||||
|
|
|
|
|
2 |
sin2ℓ+1 θdθ = |
|
|
|||||||
|
|
|
|
|
|
(2ℓ + 1)!! |
|
|
|||||||
So |
|
|
|
|
|
|
|
2ℓℓ! |
|
|
R2ℓ+1 |
|
|||
|
Φ = 2πκ X |
|
|
|
|||||||||||
|
|
f (2ℓ) |
|
P2ℓ(cos θ) |
|||||||||||
|
(2ℓ + 1)!! |
r2ℓ+1 |
but we know f (2ℓ).
|
4Q |
|
(2ℓ + 1)!! 2ℓℓ! |
|
R |
2ℓ |
|
R |
|
|||
Φ = |
|
X (−1)ℓ |
|
|
|
|
|
|
|
|
|
P2ℓ(cos θ) |
R |
(2ℓ + 1)(2ℓ)!! (2ℓ + 1)!! |
r |
r |
Since (2ℓ)!! = 2ℓℓ!,
Φ = |
4Q |
X (−1)ℓ |
1 |
|
R |
|
2ℓ |
|
R |
P2ℓ(cos θ) , r ≥ R |
|
|
|
|
|
||||||
R |
2ℓ + 1 |
r |
|
r |
The potential on the disk at the origin is V.
|
|
|
|
|
|
|
|
|
2π |
|
R |
σρdρdφ = Z |
|
2Q |
|
|
|
|
2πρ |
||||||||||
|
|
|
|
|
V = Z0 |
Z0 |
|
|
|
|
|
|ρ|√ |
|
|
|
dρ |
|||||||||||||
|
|
|
|
|
|
πR |
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
R2 − ρ2 |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Using R |
|
dx |
= sin− |
1 |
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
√ |
a2−x2 |
|
|
|a| |
, |
|
|
|
|R|! |
|0R = |
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
V = πR 2π sin−1 |
|
|
R |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
2Q |
|
x |
|
|
|
|
|
|
|
2Qπ |
|
||||||
And κ = 2Q = |
|
V |
. Then, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
πR |
|
π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
2V |
|
R |
|
|
1 |
|
|
|
|
R |
|
|
ℓ |
|
|
|
|
|
|||||
|
|
Φ = |
|
|
|
|
|
X |
(−1)ℓ |
|
|
|
|
|
P2ℓ(cos θ), r ≥ R |
||||||||||||||
|
|
|
|
π |
r |
2ℓ + 1 |
r |
|
18
A similar integration can be carried out for r < R.
|
2πQ |
|
4Q |
X (−1)ℓ |
1 |
|
r |
|
2ℓ |
|
r |
P2ℓ(cos θ) , r ≤ R |
|
Φ = |
− |
|
|||||||||||
|
|
|
|
|
|
|
|||||||
R |
R |
2ℓ + 1 |
R |
|
R |
b. Find the potential for r < R.
I can’t figure out what I did here. I’ll get back to this. c. What is the capacitance of the disc?
C = Q , but from part a Q = 2V R |
so |
|
|
|
|
||
V |
π |
|
|
|
|
|
|
|
|
2V R |
1 |
|
2R |
||
|
C = |
|
|
|
|
= |
|
|
|
π |
V |
π |
19

Problem 3.9
A hollow right circular cylinder of radius b has its axis coincident with the z axis and its ends at z = 0 and z = L. The potential on the end faces is zero while the potential on the cylindrical surface is given by Φ(φ, z). Using the appropriate separation of variables in cylindrical coordinates, find a series solution for the potential everywhere inside the cylinder.
V = 0 at z = 0, L. Because of cylindrical symmetry, we will try cylindrical coordinates. Then, we have
2 |
Φ = 0 → |
1 ∂ 1 ∂Φ |
! |
+ |
1 ∂2 Φ |
+ |
∂2Φ |
= 0 |
|||||||||
r |
|
∂r |
|
r |
|
∂r |
r2 |
|
∂φ2 |
|
∂z2 |
Try Φ(r, φ, z) = R(r)Z(z)Q(φ). Separating the Laplace equation in cylindrical coordinates, we find three di erential equations which must be satisfied.
∂2Z − k2Z = 0 ∂z2
has the solution
Z = A sin(kz) + B cos(kz)
The solution must satisfy boundary conditions that Φ = 0 at z = 0, L. Therefore, B must vanish.
Z = A sin(kz)
where k = nπL .
Similarly, we have for Q
∂2 Q − m2Q = 0 ∂φ2
which has the solution
Q = C sin(mφ) + D cos(mφ)
m must be an integer for Q to be single valued.
The radial part must satisfy the frightening equation. Note the signs. This is not the typical Bessel equations, but have no fear.
∂2 R |
+ |
1 ∂R |
− 1 + |
m2 |
! R = 0 |
||
∂x2 |
x |
|
∂x |
x2 |
20

where x = kr. The solutions are just modified Bessel functions.
R(x) = EIm(x) + F Km(x)
m must be an integer for R to be single valued. Im and Km are related to other Bessel and Neumann functions via
Im(kr) = i−mJm(ikr)
Km(kr) = π2 im+1Hm(1)(ikr)
The potential is finite at r = 0 so
Hm(1)(0) = Jm(0) |
+ iNm(0) = 0 |
|
|
|
||
But Km 6= 0 so F = 0. |
|
|
|
|
||
We can now write Φ in a general form. |
|
|
|
|
||
Φ = RZQ = X A sin |
nπ |
|
|
nπ |
||
|
z (C sin(mφ) + D cos(mφ)) EIm |
|
|
r |
||
L |
L |
Let A and E be absorbed into C and D.
∞ ∞ |
|
nπ |
|
nπ |
||
Φ = m=0 n=0 sin |
L z Im |
L r (Cmn sin(mφ) + Dmn cos(mφ)) |
||||
X X |
|
|
|
|
|
|
Now, we match boundary conditions. At r = b, Φ(φ, z) = V (φ, z). So
Φ(φ, z) = m,n sin |
nπ |
|
nπ |
||
L z Im |
L b (Cmn sin(mφ) + Dmn cos(mφ)) = V |
||||
X |
|
|
|
|
|
The Im nπL b are just a set of constants so we’ll absorb them into Cmn′ and Dmn′ for the time being. The coe cients, Cmn′ and Dmn′ , can be obtained via Fourier analysis.
|
2L |
2π |
|
nπ |
|
Cmn′ |
= κ Z0 |
Z0 |
Φ(φ, z) sin |
|
z sin (mφ) dφdz |
L |
|||||
|
2L |
2π |
Φ(φ, z) sin |
nπ |
|
Dmn′ |
= κ Z0 |
Z0 |
|
z cos (mφ) dφdz |
|
L |
21
κ is determined by orthonormality of the various terms.
|
|
|
|
|
|
|
|
|
2L |
|
|
|
|
nπ |
|
2π |
|
|
|
|
|
|
||||
|
|
|
|
κ−1 = Z0 |
sin2 |
|
|
z dz Z0 |
|
|
sin2 (mφ) dφ = |
|||||||||||||||
|
|
|
L |
2 |
|
|||||||||||||||||||||
|
|
|
|
πnm |
" |
2 |
− |
|
4 |
|
|
|
# |x2πn=0 × " |
|
− |
4 |
|
|
# |x2πm=0 |
|||||||
|
|
|
|
L |
|
|
x |
|
sin(2x) |
|
|
|
|
x |
|
|
sin(2x) |
|
||||||||
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
So κ = |
|
. Finally, we have |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
Lπ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
2L |
|
|
2π |
|
|
|
|
nπ |
|
||||||
|
Cmn = |
|
|
|
|
|
Z0 |
|
|
Z0 |
Φ(φ, z) sin |
|
z sin (mφ) dφdz |
|||||||||||||
|
Lπ |
Im |
nπ b |
|
|
|
L |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
And |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
2L |
|
|
2π |
|
|
|
|
nπ |
|
||||||
|
Dmn = |
|
|
|
|
|
Z0 |
|
|
Z0 |
Φ(φ, z) sin |
|
z cos (mφ) dφdz |
|||||||||||||
|
Lπ |
Im |
nπ b |
|
|
|
L |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22
Problem 3.14
A line charge of length 2d with a total charge of Q has a linear charge density varying as (d2 −z2), where z is the distance from the midpoint. A grounded, conducting, spherical shell of inner radius b > d is centered at the midpoint of the line charge.
a. Find the potential everywhere inside the spherical shell as an expansion in Legendre polynomials.
|
|
|
|
|
|
|
|
d |
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
Q = Z−d κ(d2 |
− z2)dz = |
|
κd3 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
so κ = |
3Q |
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
4d |
|
|
|
|
|
|
|
|
3Q |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
λ = |
(d2 − z2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
4d3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
For use later, we will write this in spherical coordinates. |
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
3Q |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
ρ(r, θ, φ) = |
|
|
|
(d2 |
− r2) |
|
|
δ(cos2 θ − 1) |
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
4d3 |
πr2 |
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
For the inside of the spherical shell, the Green’s function is: |
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
∞ ℓ |
|
|
Yℓm(θ′, φ′)Yℓm(θ, φ) |
|
|
|
|
|
|
a2ℓ+1 |
1 |
|
|
rℓ |
! |
|||||||||||||||||||||
G(x, x′) = 4π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r<ℓ |
− |
|
|
|
! |
|
|
|
|
− |
> |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
a |
) |
2ℓ+1 |
rℓ+1 |
|
rℓ+1 |
b2ℓ+1 |
|||||||||||||||||||||
|
|
ℓ=0 m= ℓ (2ℓ + 1) 1 ( |
b |
|
|
|
|
|
|
|
< |
|
|
|
> |
|
|
|
|
|||||||||||||||||||
|
|
X X |
|
|
|
|
|
h |
− |
|
|
|
|
i |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Where a and b denote the inner and outer radii. Here a = 0 so |
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
∞ |
ℓ |
|
|
Yℓm(θ′, φ′)Yℓm(θ, φ) |
|
|
|
|
|
1 |
|
|
|
|
rℓ |
|
|
|
|
|||||||||||||||
|
G(x, x′) = 4π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rℓ |
|
|
|
|
|
|
> |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− b2ℓ+1 ! |
|
||||||||||||
|
|
|
ℓ=0 m= |
ℓ |
(2ℓ + 1) |
|
|
|
|
< r>ℓ+1 |
|
|||||||||||||||||||||||||||
|
|
|
X X− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
because of azimuthal symmetry on m = 0 terms contribute. |
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
rℓ |
|
|
|
|
|||||
|
|
G(x, x′) = 4π |
Pℓ(cos θ′)Pℓ(cos θ)r<ℓ |
|
|
|
− |
> |
! |
|
|
|
|
|||||||||||||||||||||||||
|
|
|
r>ℓ+1 |
b2ℓ+1 |
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
ℓ=0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The potential can be obtained through Green’s functions techniques. |
|
|||||||||||||||||||||||||||||||||||||
|
|
|
Φ(x) = |
1 |
|
Z |
d3x′ ρ(x′)G(x, x′) |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
4πǫ0 |
|
|
|
|
|
|
|
|
|
|
|
23

And explicitly |
|
|
|
|
|
|
|
|
|
|
||||
Φ = |
1 |
|
|
|
|
3Q |
|
|
∞ |
|
|
|
|
|
4πǫ0 Z |
dφ′d(cos θ′)r′2dr′ d3r2 (d2−r′2)δ(cos2 θ′−1) |
ℓ=0 Pℓ(cos θ′)Pℓ(cos θ)r<ℓ |
||||||||||||
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
The integrations over φ′ and θ′ are easy and fun! |
|
|
|
|
|
|||||||||
|
3Q |
|
∞ |
|
|
|
|
b |
|
1 |
|
rℓ |
! |
|
Φ = |
|
|
(Pℓ(1)+Pℓ(−1))Pℓ(cos θ) |
|
dr′ r′2(d2−r′2)r<ℓ |
|
− |
> |
||||||
16πǫ d3 |
0 |
rℓ+1 |
b2ℓ+1 |
|||||||||||
|
0 |
|
ℓ=0 |
|
|
|
Z |
|
|
> |
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
Integration over r′ must be done over several regions: r < d and r′ > r, r < d and r′ < r, r > d and r′ > r, and r > d and r′ < r. When the smoke clears, we find:
|
|
|
|
|
|
3Q |
∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|||||
Φ(r, θ, φ) = |
16πǫ0d3 |
|
|
|
(Pℓ(1) + Pℓ(−1))Pℓ(cos θ)I(r, ℓ) |
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
ℓ=0 |
|
|
|
|
|
|
|
|
|
|
|
|||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
rℓ |
|
|
|
rℓ+1 |
rℓ+3 |
||||||||||
I(r, ℓ) = |
|
|
|
− |
|
! |
d2 |
|
|
− |
|
! |
|||||||||||||||||
|
rℓ+1 |
b2ℓ+1 |
ℓ + 1 |
ℓ + 3 |
|||||||||||||||||||||||||
|
d2 ℓ |
|
|
|
|
d2 ℓ |
|
|
|
|
dℓ+3 |
|
|
|
|
|
|
dℓ+3 |
|||||||||||
+rℓ "− |
|
− |
|
+ |
|
|
|
− |
− |
|
|
|
− |
|
|
# |
|||||||||||||
ℓ |
|
ℓ |
2 |
(ℓ + 1)b2ℓ+1 |
(ℓ + 3)b2ℓ+1 |
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
d2 |
|
|
|
|
r2 ℓ |
|
|
|
|
d2rℓ+1 |
|
|
|
|
|
|
rℓ+3 |
||||||||||
−rℓ "− |
|
+ |
|
|
|
|
− |
− |
|
|
− |
|
|
# |
|||||||||||||||
ℓrℓ |
|
|
ℓ |
|
2 |
(ℓ + 1)b2ℓ+1 |
(ℓ + 3)b2ℓ+1 |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Presumably, this can be reduced, but I never got around to that. For r < d and
1 − r>ℓ ! r>ℓ+1 b2ℓ+1
Φ(r, θ, φ) = |
3Q |
∞ |
1 |
|
rℓ |
! |
2dℓ+3 |
! |
16πǫ0d3 |
ℓ=0(Pℓ(1)+Pℓ(−1))Pℓ(cos θ) |
rℓ+1 |
− b2ℓ+1 |
(ℓ + 1)(ℓ + 3) |
||||
|
|
X |
|
|
|
|
|
|
The term Pℓ(1) + Pℓ(−1) is zero for odd ℓ and 2Pℓ(1) for even ℓ. So we can rewrite our answer.
b.Calculate the surface charge density induced on the shell.
σ= −ǫ0 Φ · nˆ
σ = − |
3Q ∞ |
(2ℓ + 1) 2 |
|
d |
! |
ℓ |
|||
8π ℓ=0 Pℓ(cos θ) |
(ℓ + 1)(ℓ + 3) b2 |
|
b |
|
|||||
|
|
X |
|
|
|
|
|
|
|
24

c. Discuss your answers to parts a and b in the limit d << b.
d |
|
ℓ |
|
|
|
|
|
|
|
|
|
except when ℓ = 0. Then, |
|||||||||||
In this limit, the term b |
|||||||||||
σ = − |
3Q |
|
1 2 |
|
Q |
||||||
|
P0 |
(cos θ) |
|
|
|
= − |
|
||||
8π |
3 b2 |
4πb2 |
This is what we would have expected if a point charge were located at the origin and the sphere were at zero potential. When d << b, r will most likely be greater than d for the region of interest so it will su ce to take the limit of the second form for Φ. Once again, only ℓ = 0 terms will contribute.
!
Qb − r
Φ = 4πǫ0 br
This looks like the equation for a spherical capacitor’s potential as it should!
25

Problem 4.6
A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric electric field with a gradient(∂E∂zz )0 along the z axis at the position of the nucleus.
a. Find the energy of the quadrupole interaction.
Recall that the quadrapole tensor is
Z
Qij = 3x′ix′j − r′2δij ρ(~r′)dV ′
For the external field, Gauss’s law tells us that a vanishing charge density
|
|
~ |
|
|
∂Ez |
∂Ex |
|
∂Ey |
|
|
|
|
|
|||||||
means ·E = 0. |
|
|
+ |
|
|
|
+ |
|
|
= 0. The problem is cylindrically symmetric |
||||||||||
|
∂z |
∂x |
∂y |
|||||||||||||||||
|
∂Ex |
|
∂Ey |
1 |
∂Ez |
|
|
|
|
|
|
|
|
|
|
|
||||
so |
|
= |
|
= −2 |
|
. |
|
|
|
|
|
|
|
|
|
|
||||
∂x |
∂y |
∂z |
|
|
|
|
|
|
|
|
||||||||||
According to Jackson’s equation 4.23, the energy for a quadrapole is |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
1 |
|
3 |
3 |
|
|
3xixj − r2 |
δij ρ |
∂Ej |
||
|
|
|
|
|
W = −6 i=1 j=1 Z |
∂xi d3x |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
X X |
|
|
|
|
|
When i =6 j, there is no contribution to the energy. You can understand this
|
|
|
|
|
|
|
|
|
|
|
|
~ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
~ |
|||||
by recalling that the curl of E is zero for static configurations, i.e. ×E = 0. |
|||||||||||||||||||||||||||||||||||||||||||||
When xi |
= z and xj = z, the integral is clearly qQ33 = qQnucleus, and the |
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
W |
|
|
|
|
|
|
q Q ∂Ez |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
energy contribution is |
3 |
|
|
= −6 |
1 |
|
∂z |
. |
|
Jackson hints on page 151 that in |
|||||||||||||||||||||||||||||||||||
nuclear physics Q11 = Q22 = |
|
|
|
Q . |
|
For x or x |
equals x or y, W = |
||||||||||||||||||||||||||||||||||||||
1 |
1 |
q |
∂Ez |
|
|
|
q |
|
|
|
∂Ez− |
2 |
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
i |
|
|
j |
|
|
|
|
|||||||||||
(−2 )(− |
2 )(−6 Q |
|
) = − |
|
|
Q |
|
|
|
. Thus, |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
∂z |
24 |
∂z |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
1 |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
∂E |
|
|
|
|
|
q |
|
∂E |
|||||||||||||
|
|
|
|
W = − |
|
|
+ |
|
|
|
|
|
|
|
|
|
z |
! |
|
= − |
|
|
Q |
|
z |
! |
|||||||||||||||||||
|
|
|
|
6 |
12 |
|
|
|
∂z |
4 |
∂z |
||||||||||||||||||||||||||||||||||
q.e.d. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b. Calculate (∂Ez )0 in units of |
|
|
|
q |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
4πǫ0a |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
∂z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4πǫ0h¯2 |
|||
We are given Q = 2 ×10−28 m2, W/h = 10 MHz, a0 = |
|
me q2 |
= 0.529 ×10−10 |
||||||||||||||||||||||||||||||||||||||||||
m, |
q |
|
|
= 9.73 × 10 |
2 |
N/(mC), and from part a, |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
4πǫ0a03 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q |
|
|
|
∂E |
|
! |
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W = − |
|
Q |
|
|
|
|
z |
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
∂z |
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
∂E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solve for ∂zz , |
|
|
|
|
|
|
|
∂zz |
! = |
|
h |
|
|
−q |
! |
1 Q |
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂E |
|
|
|
|
|
W |
|
|
|
|
h |
|
|
4 1 |
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26