
electrodynamics / Companion to J.D. Jackson's Classical Electrodynamics 3rd ed. - R. Magyar
.pdf
Then, ω = 2πc so dω = |
−22πc dλ. And finally, we get |
|
|
|
|
|||||||||||||
|
λ |
|
|
|
λ |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
d2N |
= |
|
2παz2 |
sin2 θc |
|
|
|
|
|||
|
|
|
|
|
|
|
dxdλ |
|
λ2 |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
which is the same as equation . |
|
|
|
|
|
|
|
|
||||||||||
Integrate over λ. |
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
! |
|||
|
dx |
|
λ1 |
λ2 |
|
|
|
c |
|
c |
λ λ |
|||||||
|
dN |
= |
Z |
λ2 |
|
2παz2 |
sin2 θ dλ = 2παz2 sin2 θ |
|
λ2 − λ1 |
|
||||||||
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
1 |
|
|
Using λ1 = 4000|~r − ~r′|A and λ2 |
|
= 6000|~r − ~r′|A, we have a numerical |
||||||||||||||||
expression. |
|
|
|
|
|
dN |
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
382.19 sin2 θc |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
dx |
|
|
|
|
in units of M eV /cm. θc is related to n and β from the results in part a.
I have lot’s of cool Maple plots which I plan on including but for now, I’ll just give you the final numbers.
For an incident electron with T = 1 MeV, the number of Cherenkov photons is about 187. The critical angle is 0.78 rad.
For an incident proton with T = 500 MeV, the number of Cherenkov photons is about 79. The critical angle is 0.50 rad.
For an incident proton with T = 5 TeV, the number of Cherenkov photons is about 208. The critical angle is 0.83 rad.
117
Problem 14.5
A non-relativistic particle of charge Zq, mass m, and kinetic energy T makes a head on collision with fixed central force field of infinite range. The interaction is repulsive and described by a potential V (r), which becomes greater than E at close distances.
a. Find the total energy radiated.
The total energy for the particle is constant.
E = |
mv2 |
|
||
|
+ V (r) |
(10) |
||
2 |
||||
|
|
|
At rmin, the velocity will vanish and E = V (rmin).
From Jackson equation 14.21, we have the power radiated per solid angle for
an accelerated charge. |
|
|
|
|
|
|
|
|
|
Z2q2 |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
dP |
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
= |
|
|
|
|
|
|v˙|2 sin2 θ |
|
|
|||||||||
|
|
|
|
dΩ |
4πc3 |
|
|
|||||||||||||||||
From Newton’s second law, m|v˙| = |dVdr | so |
|
|
|
|
|
|
||||||||||||||||||
|
|
dP |
|
|
Z2q2 |
dV |
|
|2 sin2 θ |
|
|||||||||||||||
|
|
|
|
= |
|
|
|
|
|
|
| |
|
|
|
|
|||||||||
|
|
dΩ |
4πc3m2 |
dr |
|
|||||||||||||||||||
The total power is dP |
integrated over all solid angles. |
|
||||||||||||||||||||||
dΩ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ptotal = Z |
dP |
|
|
Z2q2 |
dV |
|
|
|
π |
|
2π |
|||||||||||||
|
dΩ = |
|
|
|
|
|
|
| |
|
|
|
|2 |
Z0 |
sin2 θdθ Z0 |
dφ |
|||||||||
dΩ |
|
4πc3m2 |
dr |
|
||||||||||||||||||||
Evaluating the integrals, R0π sin2 θdθ = 34 |
and R02π dφ = 2π gives |
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
2 Z2q2 |
dV |
|
|
||||||||||
|
|
|
Ptotal = |
|
|
|
| |
|
|
|2 |
|
|
||||||||||||
|
|
|
3 |
c3m2 |
|
dr |
|
|
The total work is the power integrated over the entire trip:
Wtotal = Z |
Ptotaldt = 2 × |
2 Z2q2 |
Z |
| |
dV |
|2dt |
||
|
|
|
|
|||||
3 c3m2 |
dr |
The factor of two comes because the particle radiates as it accelerates to and from the potential. We can solve equation 10 for v.
v = |
dr |
= s |
2 |
[Vmin |
− |
V (r)] |
|
dt |
|
m |
|||||
|
|
|
|
|
118

And from this equation, we find, dt = |
√ |
|
|
|
|
|
dr |
|
|
|
|
|
|
. So |
|
|
|
|
|
|
|
|
|
||||||||||||||||
2 |
|
[Vmin |
− |
V (r)] |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
Wtotal = |
4 Z2q2 |
Z0∞ | |
dV |
|2 |
|
|
|
|
|
|
|
dr |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
3 c3m2 |
dr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
2 |
[Vmin |
|
|
V (r)] |
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
q m |
− |
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
The integral can be split into two integrals. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4Z2q2 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wtotal = |
|
r |
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3c3m2 |
2 |
|
|||||||||||||
rmin |
|
dV |
|
2 |
|
|
|
|
dr |
|
+ |
|
|
|
∞ |
dV |
|
2 |
|
|
|
|
dr |
|
|
|
|
|
|||||||||||
× |
Z0 |
| |
dr |
| |
|
|
[Vmin |
|
V (r)] |
|
|
Zrmin | |
dr |
| |
|
|
|
[Vmin |
|
|
V (r)] |
|
|||||||||||||||||
|
|
|
|
|
|
q |
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q |
|
|
|
− |
|
|
|
|
|
The region for the first integral is excluded because the particle will never go there, thus, the first integral vanishes. We are left with
|
4 Z2q2 |
|
|
|
|
∞ |
dV |
|
|
|
dr |
|
|
||||
|
|
m |
|
|
|
|
|
|
|||||||||
W = |
|
|
|
r |
|
|
Z |
rmin | |
|
|2 |
|
|
|
|
|
(11) |
|
3 |
c3m2 |
2 |
|
dr |
|
|
|
|
|
||||||||
|
|
|
[V |
min |
|
V (r)] |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
q |
− |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
quod erat demonstrandum.
b. For the Coulomb potential, Vc(r) = zZrq2 , find the total energy
radiated.
First, dVdrc = −zZr2q2 = −Vrc . Also, we can solve for dr.
Vc r2dV dVc = − r dr → dr = −zZq2
Plug Vc(r) and dr into equation 11:
|
|
|
|
|
|
|
|
|
|
|
|
|
0 Vc 2 |
|
|
|
|
r2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
W = |
|
4 Z2q2 m |
|
|
|
zZq2 |
dVc |
|
= |
|
4 Z |
|
|
|
m 0 Vc2dVc |
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
−3 c3m2 r 2 Za |
|
|
|
|
|
|
|
|
|
|
|
|
|
−3 zm2c3 r 2 Za |
|
|
|
|||||||||||||||||||||||||
|
r |
q[ |
mv02 |
|
|
|
|
|
√a − Vc |
|||||||||||||||||||||||||||||||||
|
|
− Vc] |
||||||||||||||||||||||||||||||||||||||||
|
|
2 |
||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mv2 |
|
|
|
|
|
|
|||
The limits of integration have been changed V (rmin) = |
|
0 |
= a and V (∞) = |
|||||||||||||||||||||||||||||||||||||||
|
2 |
|||||||||||||||||||||||||||||||||||||||||
0. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The integral can be evaluated using your favorite table of integrals. |
||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
x2dx |
|
|
|
|
|
|
|
|
|
|
|
16A2 |
|
|
Ax |
|
x2 |
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
= −√A − x |
|
|
|
! |
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
Z |
√ |
|
|
|
|
|
|
+ |
8 |
+ |
2 |
|
|
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
15 |
|
15 |
5 |
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
A − x |
|
|
|
|
|
|
|
|
119

So the integral equals −1615a2 √a, and finally, we have
W = 3 zm2 c3 r |
2 15 |
2 0 |
5 |
= 45 zc3 o |
||||
! |
||||||||
|
4 Z |
m |
16 |
|
mv2 |
2 |
|
8 Zmv5 |
120