Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

electrodynamics / Companion to J.D. Jackson's Classical Electrodynamics 3rd ed. - R. Magyar

.pdf
Скачиваний:
101
Добавлен:
19.03.2015
Размер:
1.02 Mб
Скачать

Then, ω = 2πc so dω =

−22πc dλ. And finally, we get

 

 

 

 

 

λ

 

 

 

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d2N

=

 

2παz2

sin2 θc

 

 

 

 

 

 

 

 

 

 

 

dxdλ

 

λ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is the same as equation .

 

 

 

 

 

 

 

 

Integrate over λ.

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

dx

 

λ1

λ2

 

 

 

c

 

c

λ λ

 

dN

=

Z

λ2

 

2παz2

sin2 θ dλ = 2παz2 sin2 θ

 

λ2 − λ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

Using λ1 = 4000|~r − ~r|A and λ2

 

= 6000|~r − ~r|A, we have a numerical

expression.

 

 

 

 

 

dN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

382.19 sin2 θc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

in units of M eV /cm. θc is related to n and β from the results in part a.

I have lot’s of cool Maple plots which I plan on including but for now, I’ll just give you the final numbers.

For an incident electron with T = 1 MeV, the number of Cherenkov photons is about 187. The critical angle is 0.78 rad.

For an incident proton with T = 500 MeV, the number of Cherenkov photons is about 79. The critical angle is 0.50 rad.

For an incident proton with T = 5 TeV, the number of Cherenkov photons is about 208. The critical angle is 0.83 rad.

117

Problem 14.5

A non-relativistic particle of charge Zq, mass m, and kinetic energy T makes a head on collision with fixed central force field of infinite range. The interaction is repulsive and described by a potential V (r), which becomes greater than E at close distances.

a. Find the total energy radiated.

The total energy for the particle is constant.

E =

mv2

 

 

+ V (r)

(10)

2

 

 

 

At rmin, the velocity will vanish and E = V (rmin).

From Jackson equation 14.21, we have the power radiated per solid angle for

an accelerated charge.

 

 

 

 

 

 

 

 

 

Z2q2

 

 

 

 

 

 

 

 

 

 

 

 

dP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

|v˙|2 sin2 θ

 

 

 

 

 

 

4πc3

 

 

From Newton’s second law, m|v˙| = |dVdr | so

 

 

 

 

 

 

 

 

dP

 

 

Z2q2

dV

 

|2 sin2 θ

 

 

 

 

 

=

 

 

 

 

 

 

|

 

 

 

 

 

 

4πc3m2

dr

 

The total power is dP

integrated over all solid angles.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ptotal = Z

dP

 

 

Z2q2

dV

 

 

 

π

 

 

dΩ =

 

 

 

 

 

 

|

 

 

 

|2

Z0

sin2 θdθ Z0

 

4πc3m2

dr

 

Evaluating the integrals, R0π sin2 θdθ = 34

and R0dφ = 2π gives

 

 

 

 

 

 

 

 

 

 

 

2 Z2q2

dV

 

 

 

 

 

Ptotal =

 

 

 

|

 

 

|2

 

 

 

 

 

3

c3m2

 

dr

 

 

The total work is the power integrated over the entire trip:

Wtotal = Z

Ptotaldt = 2 ×

2 Z2q2

Z

|

dV

|2dt

 

 

 

 

3 c3m2

dr

The factor of two comes because the particle radiates as it accelerates to and from the potential. We can solve equation 10 for v.

v =

dr

= s

2

[Vmin

V (r)]

dt

 

m

 

 

 

 

 

118

And from this equation, we find, dt =

 

 

 

 

 

dr

 

 

 

 

 

 

. So

 

 

 

 

 

 

 

 

 

2

 

[Vmin

V (r)]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wtotal =

4 Z2q2

Z0|

dV

|2

 

 

 

 

 

 

 

dr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 c3m2

dr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

[Vmin

 

 

V (r)]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The integral can be split into two integrals.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4Z2q2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wtotal =

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3c3m2

2

 

rmin

 

dV

 

2

 

 

 

 

dr

 

+

 

 

 

dV

 

2

 

 

 

 

dr

 

 

 

 

 

×

Z0

|

dr

|

 

 

[Vmin

 

V (r)]

 

 

Zrmin |

dr

|

 

 

 

[Vmin

 

 

V (r)]

 

 

 

 

 

 

 

q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

 

 

 

 

 

 

 

 

The region for the first integral is excluded because the particle will never go there, thus, the first integral vanishes. We are left with

 

4 Z2q2

 

 

 

 

dV

 

 

 

dr

 

 

 

 

m

 

 

 

 

 

 

W =

 

 

 

r

 

 

Z

rmin |

 

|2

 

 

 

 

 

(11)

3

c3m2

2

 

dr

 

 

 

 

 

 

 

 

[V

min

 

V (r)]

 

 

 

 

 

 

 

 

 

 

 

q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quod erat demonstrandum.

b. For the Coulomb potential, Vc(r) = zZrq2 , find the total energy

radiated.

First, dVdrc = −zZr2q2 = −Vrc . Also, we can solve for dr.

Vc r2dV dVc = − r dr → dr = −zZq2

Plug Vc(r) and dr into equation 11:

 

 

 

 

 

 

 

 

 

 

 

 

 

0 Vc 2

 

 

 

 

r2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W =

 

4 Z2q2 m

 

 

 

zZq2

dVc

 

=

 

4 Z

 

 

 

m 0 Vc2dVc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 c3m2 r 2 Za

 

 

 

 

 

 

 

 

 

 

 

 

 

3 zm2c3 r 2 Za

 

 

 

 

r

q[

mv02

 

 

 

 

 

a − Vc

 

 

− Vc]

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mv2

 

 

 

 

 

 

The limits of integration have been changed V (rmin) =

 

0

= a and V (∞) =

 

2

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The integral can be evaluated using your favorite table of integrals.

 

 

 

 

 

x2dx

 

 

 

 

 

 

 

 

 

 

 

16A2

 

 

Ax

 

x2

 

 

 

 

 

 

 

 

 

 

 

= −A − x

 

 

 

!

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

+

8

+

2

 

 

 

 

 

 

 

 

 

 

15

 

15

5

 

 

 

 

 

 

 

 

A − x

 

 

 

 

 

 

 

 

119

So the integral equals −1615a2 a, and finally, we have

W = 3 zm2 c3 r

2 15

2 0

5

= 45 zc3 o

!

 

4 Z

m

16

 

mv2

2

 

8 Zmv5

120