
- •60 Химическое строение и свойства витамина b1
- •Нехватка витамина b1, причины, симптомы
- •Нарушение обмена тиамина в организме
- •Суточная потребность в витамине b1, пищевые источники витамина b1
- •Продукты, богатые витамином b1
- •Химическое строение и свойства витамина b2 (рибофлавина)
- •Биохимические свойства витамина b2
- •Гиповитаминоз и гипервитаминоз витамина b2 Гиповитаминоз
- •Гипервитаминоз
- •Метаболизм пантотеновой кислоты (витамина b3)
- •Биохимические функции пантотеновой кислоты
- •Гиповитаминоз и гипервитаминоз пантотеновой кислоты
- •Суточная потребность и пищевые источники пантотеновой кислоты
- •Продукты, богатые пантотеновой кислотой (витамином b3)
- •Химическое строение и свойства витамина pp
- •Метаболизм витамина pp
- •Биохимические функции никотиновой кислоты
- •Гиповитаминоз витамина b5
- •Гипервитаминоз витамина b5
- •Оценка обеспеченности организма витамином pp
- •Суточная потребность и пищевые источники витамина b5
- •Продукты,богатые витамином pp (b5)
- •Гиповитаминоз пиридоксина (витамина b6)
- •Гипервитаминоз пиридоксина (витамина b6)
- •Врожденные нарушения обмена витамина b6
- •Гомоцистинурия
- •Цистатионинурия
- •Наследственная ксантуренурия (синдром Кнаппа)
- •Пиридоксинзависимый судорожный синдром
- •Пиридоксинзависимая анемия
- •Суточная потребность в витамине b6, пищевые источники пиридоксина
- •Метаболизм фолиевой кислоты
- •Биохимические функции и свойства витамина b9
- •Гиповитаминоз фолацина
- •Врождённые нарушения обмена витамина b9
- •Обеспеченность организма фолиевой кислотой
- •Суточная потребность в витамине b9, пищевые источники фолиевой кислоты
- •Продукты,богатые витамином b9
- •Химическое строение и свойства витамина b12 (кобаламина)
- •Метаболизм кобаламина в организме
- •Биохимические свойства и функции кобаламина (b12)
- •Недостаток кобаламина (витамина b12) в организме
- •Избыток витамина b12
- •Как проводят оценку?
- •Суточная потребность витамина b12, пищевые источники кобаламина
- •Продукты,богатые витамином b12
- •Химическое строение и свойства витамина h
- •Метаболизм биотина (витамина h)
- •Биохимические функции биотина
- •Врожденные нарушения обмена биотина, гипервитаминоз и гиповитаминоз витамина h Гиповитаминоз
- •Врожденные нарушения обмена биотина
- •Суточная потребностьи пищевые источники биотина
- •Продукты,богатые витамином h
- •Витамин с (аскорбиновая кислота), химическое строение и свойства
- •Метаболизм аскорбиновой кислоты в организме
- •Биохимические функции аскорбиновой кислоты
- •Гиповитаминоз и гипервитаминоз аскорбиновой кислоты Гиповитаминоз
- •Суточная потребность и источники аскорбиновой кислоты
- •Продукты, богатые витамином c
- •Химическое строение и свойства витамина а.
- •Метаболизм витамина а в организме человека
- •Биохимические функции ретинола
- •Участие витамина а в процессе зрения
- •Участие витамина а в антиоксидантной защите организма
- •Гиповитаминоз и гипервитаминоз ретинола Гиповитаминоз витамина а
- •Гипервитаминоз витамина а
- •Оценка обеспеченности организма ретинолом
- •Врожденные нарушения обмена ретинола
- •Суточная потребность витамина а, пищевые источники витамина а
- •Продукты, богатые витамином а
- •Химическое строение и свойства каротинов (провитаминов а)
- •Биохимические функции провитаминов а
- •Суточная потребность и пищевые источники каротинов
- •Продукты, богатые каротинами
- •Химическое строение и свойства витамина е
- •Метаболизм токоферола
- •Биохимические функции токоферола
- •Гиповитаминоз токоферола
- •Гипервитаминоз токоферола
- •Врождённые нарушения обмена токоферола
- •Оценка обеспеченности организма витамином е
- •Суточная потребность и пищевые источники токоферола
- •Продукты, богатые витамином е
- •Витамин д (кальциферол), химическое строение и свойства
- •Метаболизм витамина д
- •Биохимические функции кальциферола
- •Гиповитаминоз витамина д
- •Врожденные нарушения обмена кальциферола Семейный гипофосфатемический витамин-д-резистентный рахит.
- •Врожденный псевдодефинитный витамин-д-зависимый рахит.
- •Гипервитаминоз витамина д
- •Суточная потребность в витамине д и его источники
- •Метаболизм и биохимические функции витамина k Метаболизм витамина к
- •Биохимические функции витамина к
- •Недостаточность витамина к
- •Врожденные нарушения обмена витамина к
- •Оценка обеспеченности организма витамином к, суточная потребность
- •Продукты богатые витамином к
- •Метаболизм витамина f метаболизм витамина f
- •Биохимические функции витамина f
- •Недостаточность витамина f
- •Суточная потребность и источники витамина f
- •Продукты богатые витамином f
- •Химическое строение и свойства инозита (витамина b8)
- •Метаболизм витамина b8 (инозита)
- •Суточная потребность и источники витамина b8
- •Недостаточность карнитина
- •Потребность и пищевые источники липоевой кислоты
- •Потребность и источники парааминобензойной кислоты.
- •Суточная потребность и пищевые источники рутина
- •Продукты, богатые витамином p
Метаболизм и биохимические функции витамина k Метаболизм витамина к
Витамин К всасывается аналогично всем жирорастворимым витаминам, т. е. включается вначале в состав мицелл, а затем — хиломикронов. В плазме крови он связывается с альбуминами. Накапливается в печени, селезенке и сердце. В тканях образуется активная форма витамина — менахинон-4 (содержит четыре изопреноидные единицы). Конечные продукты обмена витамина выделяются с мочой.
Биохимические функции витамина к
Единственная известная биологическая роль витамина К заключается в том, что он является коферментом у-глута-маткарбоксилазы, карбоксилирующей глутаминовую кислоту с образованием у-карбоксиглутаминовой кислоты. Фермент удалось очистить до гомогенного состояния (белковая цепь содержит 758 аминокислот с преобладанием гидрофобных) и определить его структурный ген (он включает 15 экзонов).
При взаимодействии восстановленной формы витамина К-Н2 с у-глутаматкарбоксилазой в присутствии кислорода образуется сильное основание (алкоксид), способное отнять от у-С атома глутамино-вой кислоты водород, на место которого присоединяется СО2, при этом образуется у-карбоксиглутаминовая кислота. В холе реакции появляются коротко живущие и высоко токсичные промежуточные соединения (свободные радикалы витамина К), которые превращаются в нетоксичный эпоксид витамина К в присутствии тута мата. Эпоксил витамина К снова восстанавливается в витамин К-Н2 с помощью ферментов редуктаз. Следовательно, при дефиците глутаминовой кислоты в клетке затрудняется обезвреживание токсичных свободных радикалов витамина К. у-карбоксиглутаминовая кислота является Са+*-связывающей аминокислотой, которая необходима для функционирования кальцийсвя-швающих белков. К таковым относятся:
факторы свертывающей системы крови — IX, VII, X и протромбин;
регуляторные белки (протеин С и протеин S), нуждающиеся в у-карбоксиглутаминовой кислоте для Са-индуцированного взаимодействия с поверхностью клеточной мембраны;
белки минерализации костной ткани (костный у-карбоксиглута-миновый протеин и другие); поскольку при дефекте синтеза костного у-карбоксиглутаминового белка кальцифицируются артерии и хряши; возможно, что его функцией является также контроль за внекостной кальцификацией;
витамин-К-зависимый белок Gas 6, активирующий рост глад-комышечных клеток; витамин-К-зависимый сократительный белок хвостика сперматозоида;
некоторые нейротоксины (например, содержащиеся в яде улитки).
Общей особенностью всех витамин-К-зависимых белков является формирование белковой сеточки, образованной гамма-карбоксилутаминовой кислотой, связанной с кальцием. Такая сеть впервые была описана для протромбина. Протромбин в присутствии Са++ связывается с биомембраной, что является необходимым условием для реализации процесса свертывания крови.
Витамин-К-зависимые белки синтезируются в эндоплазматическом ретикулуме в виде белков-предшественников, содержащих сигнальный участок и «участок узнавания» для гамма-карбоксилирования. После отщепления сигнального пептида белок с помощью «участка узнавания» связывается с витамин-К-зависимой карбоксилазой, локализирующейся в мембранах эндоплазматического ретикулума. В результате этого связывания у-карбоксиглутаматкарбоксилаза переходит из неактивного состояния в активное и начинает осуществлять каталитическое превращение остатка глутаминовой кислоты в у-карбоксиглутаминовую кислоту в витамин-К-зависимом пробелке.
Карбоксилированный яробелок перемешается в сетчатый аппарат Гольджи, где расщепляется, и зрелая белковая молекула секретируется клеткой в межклеточное пространство (см. рис. ниже). На N-конце зрелого протромбина и других К-зависимых белков содержится 10—12 остатков у-карбоксиглутаминовой кислоты. Домены с такими участками высоко структурированы и заключают в себе линейно расположенные ионы кальция.