
- •60 Химическое строение и свойства витамина b1
- •Нехватка витамина b1, причины, симптомы
- •Нарушение обмена тиамина в организме
- •Суточная потребность в витамине b1, пищевые источники витамина b1
- •Продукты, богатые витамином b1
- •Химическое строение и свойства витамина b2 (рибофлавина)
- •Биохимические свойства витамина b2
- •Гиповитаминоз и гипервитаминоз витамина b2 Гиповитаминоз
- •Гипервитаминоз
- •Метаболизм пантотеновой кислоты (витамина b3)
- •Биохимические функции пантотеновой кислоты
- •Гиповитаминоз и гипервитаминоз пантотеновой кислоты
- •Суточная потребность и пищевые источники пантотеновой кислоты
- •Продукты, богатые пантотеновой кислотой (витамином b3)
- •Химическое строение и свойства витамина pp
- •Метаболизм витамина pp
- •Биохимические функции никотиновой кислоты
- •Гиповитаминоз витамина b5
- •Гипервитаминоз витамина b5
- •Оценка обеспеченности организма витамином pp
- •Суточная потребность и пищевые источники витамина b5
- •Продукты,богатые витамином pp (b5)
- •Гиповитаминоз пиридоксина (витамина b6)
- •Гипервитаминоз пиридоксина (витамина b6)
- •Врожденные нарушения обмена витамина b6
- •Гомоцистинурия
- •Цистатионинурия
- •Наследственная ксантуренурия (синдром Кнаппа)
- •Пиридоксинзависимый судорожный синдром
- •Пиридоксинзависимая анемия
- •Суточная потребность в витамине b6, пищевые источники пиридоксина
- •Метаболизм фолиевой кислоты
- •Биохимические функции и свойства витамина b9
- •Гиповитаминоз фолацина
- •Врождённые нарушения обмена витамина b9
- •Обеспеченность организма фолиевой кислотой
- •Суточная потребность в витамине b9, пищевые источники фолиевой кислоты
- •Продукты,богатые витамином b9
- •Химическое строение и свойства витамина b12 (кобаламина)
- •Метаболизм кобаламина в организме
- •Биохимические свойства и функции кобаламина (b12)
- •Недостаток кобаламина (витамина b12) в организме
- •Избыток витамина b12
- •Как проводят оценку?
- •Суточная потребность витамина b12, пищевые источники кобаламина
- •Продукты,богатые витамином b12
- •Химическое строение и свойства витамина h
- •Метаболизм биотина (витамина h)
- •Биохимические функции биотина
- •Врожденные нарушения обмена биотина, гипервитаминоз и гиповитаминоз витамина h Гиповитаминоз
- •Врожденные нарушения обмена биотина
- •Суточная потребностьи пищевые источники биотина
- •Продукты,богатые витамином h
- •Витамин с (аскорбиновая кислота), химическое строение и свойства
- •Метаболизм аскорбиновой кислоты в организме
- •Биохимические функции аскорбиновой кислоты
- •Гиповитаминоз и гипервитаминоз аскорбиновой кислоты Гиповитаминоз
- •Суточная потребность и источники аскорбиновой кислоты
- •Продукты, богатые витамином c
- •Химическое строение и свойства витамина а.
- •Метаболизм витамина а в организме человека
- •Биохимические функции ретинола
- •Участие витамина а в процессе зрения
- •Участие витамина а в антиоксидантной защите организма
- •Гиповитаминоз и гипервитаминоз ретинола Гиповитаминоз витамина а
- •Гипервитаминоз витамина а
- •Оценка обеспеченности организма ретинолом
- •Врожденные нарушения обмена ретинола
- •Суточная потребность витамина а, пищевые источники витамина а
- •Продукты, богатые витамином а
- •Химическое строение и свойства каротинов (провитаминов а)
- •Биохимические функции провитаминов а
- •Суточная потребность и пищевые источники каротинов
- •Продукты, богатые каротинами
- •Химическое строение и свойства витамина е
- •Метаболизм токоферола
- •Биохимические функции токоферола
- •Гиповитаминоз токоферола
- •Гипервитаминоз токоферола
- •Врождённые нарушения обмена токоферола
- •Оценка обеспеченности организма витамином е
- •Суточная потребность и пищевые источники токоферола
- •Продукты, богатые витамином е
- •Витамин д (кальциферол), химическое строение и свойства
- •Метаболизм витамина д
- •Биохимические функции кальциферола
- •Гиповитаминоз витамина д
- •Врожденные нарушения обмена кальциферола Семейный гипофосфатемический витамин-д-резистентный рахит.
- •Врожденный псевдодефинитный витамин-д-зависимый рахит.
- •Гипервитаминоз витамина д
- •Суточная потребность в витамине д и его источники
- •Метаболизм и биохимические функции витамина k Метаболизм витамина к
- •Биохимические функции витамина к
- •Недостаточность витамина к
- •Врожденные нарушения обмена витамина к
- •Оценка обеспеченности организма витамином к, суточная потребность
- •Продукты богатые витамином к
- •Метаболизм витамина f метаболизм витамина f
- •Биохимические функции витамина f
- •Недостаточность витамина f
- •Суточная потребность и источники витамина f
- •Продукты богатые витамином f
- •Химическое строение и свойства инозита (витамина b8)
- •Метаболизм витамина b8 (инозита)
- •Суточная потребность и источники витамина b8
- •Недостаточность карнитина
- •Потребность и пищевые источники липоевой кислоты
- •Потребность и источники парааминобензойной кислоты.
- •Суточная потребность и пищевые источники рутина
- •Продукты, богатые витамином p
Суточная потребность и пищевые источники токоферола
Основной источник токоферола — растительные масла, однако только свежие, получаемые методом холодного прессования. Поскольку растительное масло обычно экстрагируют из семян при высокой температуре, затем подвергают очистке, дезодорированию и рафинированию, в нем значительно уменьшается содержание токоферола. Более того, избыток растительных масел в рационе усиливает недостаточность витамина Е в организме, так как он расходуется на интенсифицированный потреблением ненасыщенных жирных кислот масел процесс ПОЛ.
Лучшим пищевым источником витамина Е являются орехи, семечки, гречневая крупа, проросшие ростки пшеницы. Он содержится в листьях салата и капусты. Из продуктов животного происхождения более всего токоферола в сливочном масле, сале, мясе, желтке яиц. В молоке этого витамина мало.
Суточная потребность — 10 мг. Однако токоферол быстро расходуется в организме, особенно в условиях стимулированного ПОЛ, что имеет место при многих заболеваниях. Окислительной деструкции витамина Е препятствует витамин С. Это обусловлено присутствием в молекуле последнего фенольной группы — донора водорода, который способен «гасить» свободный радикал токоферола. Тем самым витамин С экономит фонд витамина Е. С целью усиления антиоксидант-ного эффекта токоферола его следует назначать с аскорбиновой кислотой.
Продукты, богатые витамином е
Витамин д (кальциферол), химическое строение и свойства
В 1936 г. А. Виндаусом из рыбьего жира был выделен препарат, излечивающий рахит. Он был назван витамином Д3, так как ранее А. Гессом и М. Вейнштоком из растительных масел был выделен эргостерин, получивший название витамин Д1, При воздействии на витамин Д1 УФ-лучей образовывалось излечивающее рахит соединение — витамин Д2, эргокалциферол (кальциферол означает несущий кальций). В растениях при УФ-облучении синтезируются и другие витамеры эргостерина (Д4-7).
Наиболее важным из группы витаминов Д является витамин Д3 — холекальциферол. Холекальциферол образуется в качестве промежуточного продукта при биосинтезе холестсрола (из 7-дегидрохолестерола) в клетках кожи человека под влиянием УФ-лучей.
Метаболизм витамина д
Витамины группы Д всасываются подобно витамину А. В печени витамины подвергаются гидроксилированию микросомной системой оксигеназ по С-25 (из витамина Д3 образуется 25 (ОН) -Д3 т. е. 25-гидроксихолекальциферол), и затем переносятся током крови с помощью специфического транспортного белка в почки. В почках осуществляется вторая реакция гидроксилирования по С-1 с помощью митохондриальных оксигеназ (образуется 1,25 (ОН) 2-Д3, т. е. 1,25-дигидроксихолекальциферол, или кальцитриол). Эта реакция активируется паратиреоидным гормоном, секретируемым паращито-видной железой, когда уровень кальция в крови снижается. Если уровень кальция адекватен физиологической потребности организма, вторичное гидроксилирование происходит по С-24 (вместо С-1), при этом образуется неактивный метаболит 1,24 (ОН) 2-Д3. В реакциях гидроксилирования принимает участие витамин С.
Витамин Д3 накапливается в жировой ткани. Выводится главным образом с калом в неизмененном или окисленном виде, а также в виде конъюгатов.