Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

obshaja_cytologija

.pdf
Скачиваний:
16
Добавлен:
18.03.2015
Размер:
1.79 Mб
Скачать

компонента. Считается, что В-23 участвует в промежуточных и терминальных стадиях биогенеза рибосом, и в транспорте пре-рибосом.

Общая схема работы ядрышка как специального локуса синтеза рибосом

При становлении синтеза рРНК в ядрышках на поверхности ФЦ происходит активация транскрипционных единиц, - связывание с факторами транскрипции и РНК_полимеразой I, которая начинает считывать первичный транскрипт рРНК. По мере прохождения первой РНК-полимеразы I, на освобождающемся участке транскрипционной единицы садится следующая РНК-полимераза и начинается синтез новой рРНК. Одновременно и последовательно на одном р- гене могут находиться до сотни РНК-полимераз I, от которых отходят транскрипты разной степени завершенности. Конечным продуктом является пре-рРНК или 45S рРНК. По мере синтеза растущие цепи рРНК одеваются рибосомными белками, поступающими в ядро из цитоплазмы, так что сразу образуются цепи РНП-предшественников. Совокупность продуктов транскрипции нескольких транскрипционных единиц образует вокруг ФЦ зону ПФК. Конечным продуктом такого синтеза является рибонуклеопротеидный тяж, или глобула, имеющая константу седиментации около 80S, содержащая одну молекулу 45S рРНК. После отделения 45S рРНК в терминальной точке транскрипционной единицы происходит расщепление – процессинг 45S рРНК, в конце которого образуются 40S и 60S рибосомные субъединицы. Синтез малых субъединиц в ядрышке занимает примерно 30 мин, а больших – около 1 ч. В ядрышке незрелая 60S рибосомная субъединица, коме двух фрагментов рРНК (28S и 5,8S) связывается с третьим (5S), который синтезировался независимо от хромосом с ядрышковыми организаторами на других хромосомах. Такие новообразованные рибосомные субъединицы особым образом выходят из ядра в цитоплазму через ядерные поры. В цитоплазме такие незрелые рибосомы могут связаться с дополнительными белками. 40S субъединица сначала связывается с иРНК, и только затем с большой 60S субъединицей, образуя полную 80S функционирующую рибосому (рис. 92).

181

Новые, неканонические функции ядрышек

Последние данные показывают, что кроме синтеза рРНК, ядрышко участвует во многих других аспектах экспрессии генов.

Первые намеки (1965) на признаки полифункциональности ядрышек были получены при изучении гетерокарионов. Так при слиянии человеческих клеток HeLa с эритроцитами кур были получены гетерокарионы с первоначально совершенно разными ядрами. Ядра клеток HeLa были функционально активны, в них шел синтез разнообразных РНК. Исходные ядра эритроцитов кур содержали сверхконденсированный хроматин, не содержали ядрышек и не транскрибировались. В гетерокарионе после слияния с HeLa клетками в ядрах эритроцитов кур хроматин начинал деконденсироваться, активировалась транскрипция, появлялись ядрышки. Иммуноцитохимическими методами изучалось появление в гетерокарионах белков, характерных для куриных клеток. Несмотря на то, что в клетках HeLa была готовая система функционирования рибосом и были сформированы ядрышки, появление куриных белков было отложено до тех пор пока не возникнут ядрышки в ядрах эритроцитов. Это означало, что ядрышко куриного эритроцита как-то должно вовлекаться в образование куриных иРНК, т.е. ядрышко должно играть какую-то роль в продукции куриных иРНК.

Позднее были накоплены данные в поддержку этой возможности. Было обнаружено, что созревание (сплайсирование, см. ниже) c-myc иРНК в клетках млекопитающих происходит в ядрышках. В ядрышках обнаружены сплайсосомные малые РНК (sn РНК), факторы сплайсинга пре-иРНК.

Далее в ядрышках обнаруживаются РНК, входящие в SRP-частицы, участвующие в синтезе белков в эндоплазматическом ретикулуме. С ядрышком оказалась ассоциирована РНК теломеразы – рибонуклеопротеида (обратная транскриптаза). Много есть данных о локализации в ядрышках прцессинга малых ядерных РНК, входящих в состав сплайсосом, и даже о процессинге тРНК.

182

Ядрышко во время митоза: периферический хромосомный материал

В световом микроскопе ядрышко выявляется во время интерфазы, в митотических клетках оно исчезает. При использовании цейтраферной микрокиносъемки можно наблюдать в живых клетках как по мере конденсации хромосом в интерфазе происходит исчезновение ядрышка. Сначала оно слегка уплотняется, но затем ко времени разрыва ядерной оболочки начинает быстро терять плотность, становится рыхлым и на глазах быстро исчезает, как бы тает. При этом видно, что часть ядрышкового материала растекается между хромосомами. В метафазе и анафазе ядрышки как таковые отсутствуют. Первые признаки новых ядрышек появляются после средней телофазы, когда уже достаточно разрыхлились хромосомы дочерних ядер, имеющие новую ядерную оболочку. В это время вблизи деконденсирующихся хромосом появляются плотные тельца – предъядрышки. Обычно их число выше, чем число ядрышка в интерфазе. Позднее уже в G1-периоде клеточного цикла предъядрышки растут, начинают объединяться друг с другом, их общее число падает, но суммарный объем возрастает. Общий объем ядрышка удваивается в S-G2-фазах. В некоторых случаях в профазе (культуры клеток человека) при конденсации хромосом крупные ядрышки распадаются на более мелкие, которые в митозе исчезают.

На самом деле никакого полного исчезновения, или «растворения» ядрышка нет: происходит изменение его структуры, редукция одной части его компонентов при сохранении другой. Так было показано, что аргентофильные гранулы в интерфазных ядрышках, обнаруживаемые в световом микроскопе начинают в профазе сливаться друг с другом, одновременно уменьшаясь в объеме, минимальный размер они занимают в метафазе, локализуясь в зонах ядрышковых организаторов хромосом. В таком виде они существуют до средней телофазы, когда выявляются в виде отдельных множественных «предъядрышек», разбросанных среди

183

деконденсированных хромосом. Уже в конце телофазы такие аргентофильные предъядрышки начинают расти. Таким образом можно видеть, что во время митоза исчезновению подвергается только часть ядрышкового компонента, в то время как аргентофильный компонент сохраняется, постоянно существует во время митоза и переносится на хромосомах в дочерние ядра.

Радиоавтографическими исследованиями было показано, что исчезновение ядрышек совпадает с прекращением синтеза клеточной (в основном рибосомной) РНК, который возобновляется в поздней телофазе, совпадая по времени с появлением новых ядрышек.

Кроме того было обнаружено, что активность РНК-полимеразы I также исчезает на средних стадиях митоза. Это давало основание считать, что новообразование ядрышек связано с восстановление синтеза рРНК в дочерних клетках.

Но с другой стороны существуют факты, указывающие на перманентное, постоянное присутствие ядрышковых компонентов течение всего клеточного цикла. Это относится к Ag-фильному материалу ядрышек в первую очередь.

Цитологи начала ХХ века часто наблюдали во время митоза появление какого-то нехроматинового материала, окружающего каждую хромосому. Этот материал или «матрикс» митотических хромосом, как считали, мог иметь ядрышковое происхождение и его роль могла заключаться в том, что он может служить источником новых ядрышек в дочерних ядрах после митоза.

Электронная микроскопия показала, что «матрикс» – нехроматиновый компонент митотических хромосом, состоящий из скопления рыхло расположенных фибрилл и гранул, имеющих рибонуклеопротеидную природу, морфологически сходных с компонентами, входящими в состав интерфазных ядрышек, выявляется в условиях конденсации митотических хромосом как растительного, так и животного происхождения. При этом

184

некоторые компоненты ядрышек диссоциируют и уходят в цитоплазму (большая часть РНП-частиц), в то время как другие тесно связываются с поверхностью хромосом, образуя основу «матрикса» или, как этот компонент теперь называют, основу периферического хромосомного материала (ПХМ) (рис. 93). Этот фибриллярно-гранулярный материал, синтезированный до митоза, переносится хромосомами в дочерние клетки. В ранней телофазе еще в отсутствие синтеза РНК по мере деконденсации хромосом происходит структурное перераспределение компонентов ПХМ. Его фибриллярные компоненты начинают собираться в мелкие ассоциаты – предъядрышки, которые могут сливаться друг с другом, собираться в зоне ядрышкового организатора хромосом в поздней телофазе, где возобновляется транскрипция рРНК.

Новый этап в изучении периферического материала митотических хромосом связан с использованием иммуноцитохимических методов выявления ядрышковых белков. Было показано, что митотические хромосомы действительно участвуют в переносе в дочерние клетки белков ядрышек, белков ядерного остова, так и различных РНП. Так было установлено, что ядрышковые белки, участвующие в транскрипции рРНК (РНК-полимераза I, топоизомераза I, фактор инициации транскрипции UBFи др.), аккумулируются в зоне ядрышкового организатора, в то время как белки, связанные с процессингом пре=рРНК (фибрилларин, нуклеолин, В- 23), а также некоторая часть пре-рРНК и малые ядрышковые РНП переносятся поверхностью хромосом в составе периферического хромосомного материала (рис. 94).

Кроме того в состав ПХМ могут входить некоторые негистоновые белки из состава ядерного интерфазного остова (рис.95).

Следовательно митотические хромосомы участвуют не только в их главной функции – перенос генетического материала в виде ДНК – но, кроме того, участвуют в переносе целого ряда белков и РНК (рис. 96).

185

Биологический смысл появления ПХМ на поверхности митотических хромосом может заключаться в том, что переносимые хромосомами белки не являются случайными «пассажирами», а представляют собой комплекс белков разного происхождения: ферменты и факторы ядрышковой транскрипции, процессинга рРНК, сборки рибосом, незрелые предшественники рибосом и, кроме того, белки ядерного и ядрышкового матрикса, также содержащие малые ядерные РНП и все компоненты, связанные с образованием нерибосомных РНК, с их сплайсингом и др. Другими словами, ПХМ переносит в новые ядра многие белковые компоненты и ферменты, что создает условия, необходимые для форсированного возобновления синтеза и созревания как рибосом, так и синтеза информационных РНК. Митотическая хромосома переносит в новое ядро не только генетическую информацию в виде ДНК хроматина, но и необходимые компоненты синтетического аппарата, готового к активации транскрипции в новом клеточном цикле. Хромосома при клеточном делении»все свое несет с собой» – как гласит латинская поговорка.

Глава 9. Нерибосомные продукты клеточного ядра Транскрипция нерибосмных генов

Информационные РНК образуются при участии РНК-полимеразы II, начинающей синтез со стартовой точки транскрипционной единицы, и

кончая его в точке терминации. При этом образуется одна молекула РНК, транскрипт – предшественник информационной РНК. Размер транскрипционных единиц разных генов может значительно варьировать от 6 тыс. до 200 тыс. нуклеотидов. Поэтому суммарная фракция РНК, синтезированная на разных генах содержит молекулы различной длины. Эта первично синтезированная РНК или т.н. гетерогенная ядерная РНК (гяРНК), встречается только в ядре и не обнаруживается в цитоплазме. В цитоплазму попадает уже информационная РНК, образующаяся в результате изменений в ядре первичных транскриптов РНК (гяРНК).

186

Величина гяРНК в несколько раз больше той, которая требуется для синтеза белков: для синтеза «среднего белка», состоящего из 400 аминокислот, необходима матричная РНК в 1200 нуклеотидов. На самом деле величины информационных РНК в составе синтезирующих белок полисом в несколько раз короче первичных транскриптов. Это укорочение является результатом «созревания» гяРНК, процессинга, но иного характера, чем процессинг рибосомных РНК. Структура гена эукариотов оказалась состоящей из чередующихся последовательностей нуклеотидов, т.н. экзонов и интронов. Экзоны – участки ДНК, которые обладают кодирующей информацией и входят в состав информационных РНК, а интроны содержат последовательности, не входящие в информационную РНК. Первичный транскрипт РНК содержит полную копию гена, включает в себя все последовательности и экзоны и интроны. Интроны впоследствии вырезаются из первичного транскрипта, концы же фрагментов РНК сшиваются ковалентно, что приводит к общему укорачиванию образовавшейся молекулы информационной РНК. Этот процесс получил название сплайсинга. Так как большинство генов млекопитающих содержит большее число интронов, чем экзонов, процесс сплайсинга РНК приводит к тому, что очень длинные молекулы гяРНК (первичных транскриптов, содержащих более чем 50 000 нуклеотидов) укорачиваются до длины цитоплазматических иРНК (обычно от 500 до 3000 нуклеотидов длиной) (рис. 97).

По мере синтеза и роста гяРНК, она связывается с рядом ядерных белков, образуя гяРНП-частицы (гетерогенные ядерные рибонуклеопротеиновые частицы). При этом высокомолекулярная гяРНК в ядрах наматывается на глобулярные белковые частицы, информоферы. На каждый информафер приходится отрезок РНК длиной около 500-600 нуклеотидов. Такой комплекс информофера и РНК образует мономер или 30S частицу. В состав каждого информофера входит более 30 белковых молекул информатина. Таким

187

образом первичный транскрипт структурного гена, отвечающего за образование информационной РНК, представляет собой гигантскую молекулу гяРНК, связанную со множеством белковых частиц, информофер. Считается, что участки гяРНК, между информоферами, могут быть использованы для сплайсинга с помощью специальных белковых комплексов

сплайсосом. В состав сплайсосом входит 5-7 малых ядерных рибонуклеопротеидов (snRNP).Эти особые малые ядерные РНП (мяРНП) представляют собой РНП-частицы (U1, U2, U5, U4, U6 snRNP) с константой седиментации около 10S. В каждой частице содержится одна малая молекула РНК (90-400 нуклеотидов) и около семи молекул белка. Так что сплайсосома представляет собой крупный рибонуклеопротеидный комплекс величиной, сравнимой с рибосомой (константа седиментации около 60S).

При синтезе гяРНК и после него сплайсосомы связываются с цепью РНК в местах на границе между экзонами и интронами, специфически узнавая эти места, производят разрыв в основании петлиинтрона, сшивают свободные концы (рис. 98). Таким способом участки интронных последовательностей вычленяются из состава первичного транскрипта, а затем быстро деградируют в ядре. В результате этого процесса длина результирующей молекулы РНК может укорачиваться в несколько раз. Так, например, размер гена белка тироглобулина включает 300 тыс. нуклеотитов, размер же иРНК для этого белка составляет всего 8,7 тыс. нуклеотидов из-за того, что в составе гена включены 36 интронных последовательностей, т.е. происходит укорочение молекул РНК более чем в 30 раз. Размер гена каталазы равен 34 т.п.н., а размер иРНК – 1,6 т.п.н. Величина овальбуминового гена у птиц составляет 7,5 т.п.н., а соответствующая этому гену зрелая иРНК – всего 1,8 т.п.н. Обычно иРНК в 2,5-10 раз короче первичного транскрипта, гяРНК.

Считается, что после созревания иРНК, при переходе ее из ядра в цитоплазму теряет белки, входящие в состав информофера, «переодевается» в ядерной поре, а белки информофер остаются в ядре. В цитоплазме иРНК

188

снова одеваются новыми белками,образуя «информосомы» – форму хранения иРНК в неактивном состоянии, или связываются с белками, необходимыми для трансляции.

Морфология РНП-компонентов в ядре

Вся информация, полученная о морфологии транскриптов рРНК и иРНК, об информоферах и сплайсосомах получена на изучении выделенных из ядер этих компонентов, подвергнутых специальной обработке для распластывания их на препаратах для электронной микроскопии.

Что же касается морфологии РНП-продуктов in situ, в объеме интактных ядер, то здесь информация неполная и противоречивая.

Кроме хорошо выраженного ядрышка, другие продукты ядерной активности при изучении клеток на ультратонких срезах не бросаются в глаза: их трудно отличить от различных фибрилл (ДНП, матрикс)и каких-то гранул, казалось бы без особого порядка разбросанных в ядре. Все же, используя метод избирательного контрастирования солями урана структур, содержащих РНК, удается выделить ряд компонентов, которые можно отнести к неядрышковым продуктам транскрипции. Это – перихроматиновые фибриллы, перихроматиновые гранулы и интерхроматиновые гранулы (рис. 99б, 100).

Перихроматиновые фибриллы обнаруживаются по периферии участков конденсированного хроматина (околомембранного или любого другого). Они имеют толщину около 3-5 нм, часто образуют рыхлую неправильную сеть. Оказалось, что этот компонент ядра сильно изменяется при стимуляции синтеза РНК. Так, при возрастании синтеза РНК в клетках печени крыс после голодания и последующего питания или после введения кортизона адреналэктомированным животным зоны перихроматиновых фибрилл значительно увеличиваются. Эти зоны оказались наиболее активными по включению меченых предшественников в РНК, что было показано

189

радиоавтографически с помощью электронного микроскопа. Такие фибриллы могут представлять новосинтезированную гяРНК.

Другой тип РНК-содержащих структур интерфазного ядра - перихроматиновые гранулы. Они имеют диаметр около 45 нм и окружены светлым ореолом. Эти гранулы встречаются только на периферии конденсированного хроматина, в диффузном хроматине их нет. Считается, что между этими гранулами и перихроматированными фибриллами существует структурная связь. При больших увеличениях внутри гранул можно видеть тонкие извитые фибриллы 3-5 нм толщиной.

Крупные гранулы типа перихроматиновых встречаются в специфических активных в отношении синтеза РНК участках политенных хромосом, в пуффах (см. ниже). Сходные гранулы обнаружены в боковых петлях функционирующих мейотических хромосом. Исходя из этого, некоторые исследователи делают предположение, что такие рибонуклеопротеидные гранулы могут представлять собой зрелые комплексы из нескольких информофер, рибонуклеопротеидные частицы, содержащие информационную РНК. Однако это предположение нуждается в проверке.

Интерхроматиновые гранулы - третий тип РНК-содержащих структур. Они имеют размер 20-25 нм и группируются всегда в форме скоплений между участками хроматина. Эти гранулы не стандартны по величине и переплетены тонкими фибриллами.

Впоследнее время были получены антитела к мяРНП. Оказалось, что среди них есть и различные сплайсосомы, гранулы размером 20-30 нм. Эти мяРНП располагались в зонах свободных от конденсированного хроматина и по своей локализации совпадали с зонами, где располагались скопления интерхроматиновых гранул. Они могут представлять собой скопление сплайсосом, участвующих в конечных стадиях созревания гяРНК.

Втаком случае всю картину динамики синтеза гяРНК можно представить себе следующим образом. Деконденсирующиеся участки хроматина

190

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]