- •Гидролиз и щелочное дегидрохлорирование хлорпроизводных
- •Получение эпихлоргидрина
- •Получение глицерина из эпихлоргидрина
- •Процессы гидратации и дегидратации
- •Механизм и кинетика реакций
- •Побочные реакции и селективность процесса
- •Прямая гидратация олефинов
- •Производство этанола
- •Гидратация ацетилена с ртутным катализатором
- •С нЕртутным катализатором
- •Гидратация ацетилена с нертутным катализатором
- •Процессы дегидратации Дегидратация с образованием соединений с ненасыщенной связью Получение изобутена
- •Дегидратация с образованием простых эфиров
- •Дегидратация карбоновых кислот
- •Технология процессов дегидрирования
- •Химия и теоретические основы процесса этерификации Процессы получения сложных эфиров (процессы этерификации)
- •Термодинамика реакций этерификации
- •Механизм и кинетика реакций
- •Получаемые продукты
- •Технология процесса этерификации. 4 вида процесса
- •Получение эфиров из хлорангидридов. Карбонаты и эфиры кислот фосфора Синтез хлоркарбонатов и карбонатов
- •Эфиры кислот фосфора
- •Синтез и превращения азотпроизводных кислот Азотпроизводные карбоновых кислот Амидирование
- •Дегидратация амидов и гидратация нитрилов
- •Гидролиз и этерификация нитрилов
- •Синтез и превращения азотпроизводных угольной кислоты
- •Синтез изоцианатов
- •Замещенные карбамиды
- •Технология производства меламина
- •Характеристика процессов алкилирования
- •Алкилирующие агенты и катализаторы
- •Энергетическая характеристика основных реакций алкилирования
- •Алкилирование по атому углерода, c-алкилирование Катализаторы
- •Последовательное алкилирование
- •Кинетика процесса
- •Побочные реакции: Смолообразование, Деструкция алкильных групп, Полимеризация олефинов
- •Термическая газификация топлив
- •Алкилирование фенолов
- •Получаемые продукты
- •Технология процесса
- •Алкилирование парафинов
- •Технология процесса
- •Алкилирование по атому кислорода, о-алкилирование
- •Синтез меркаптанов из олефинов и сероводорода
- •Алкилирование по атому азота (n-алкилирование)
- •Синтез аминов из хлорпроизводных
- •Получаемые продукты
- •Технология процесса
- •Синтез аминов из спиртов
- •Технология процесса
- •Синтез кремнийорганических соединений
- •Другие реакции алкилирования по атому кремния
- •Алюминийорганические соединения и синтезы на их основе
- •Алюминийорганический синтез Производство линейных α-олефинов
- •Синтез линейных первичных спиртов
- •Невошедшее
- •Реакционный узел
- •Т ехнологическая схема производства этил- и изопропилбензола
Гидратация ацетилена с ртутным катализатором
Гидратация с ртутным катализатором проводится в жидкой фазе путем барботирования ацетилена через 10—20%-ю серную кислоту, содержащую 0,5—0,6 % HgO, который находится в растворе в виде HgS04. Реакция практически необратима и имеет не такой механизм, как гидратация олефинов. Считают, что образуется комплекс ацетилена с Hg2+, дальнейшие превращения которого ведут к получению ацетальдегида:
В указанных выше условиях наряду с гидратацией ацетилена протекают два побочных процесса — конденсация ацетальдегида с образованием кротонового альдегида и дальнейшим его осмолением:
и реакцией, в кот. происходит восстановление ацетальдегидом солей ртути с превращением их в неактивную форму:
В реакционный раствор для подавления побочной реакции восстановления ртутных солей (быстро дезактивируют катализатор) добавляют соль трехвалентного железа, кот. способна окислять восстановленную форму ртути снова в двухвалентное состояние:
Данная добавка увеличивает срок службы катализатора.
Соль железа добавляют в избытке по отношению к ртути, поэтому катализаторный раствор работает достаточно длительное время. Однако в нем постепенно накапливаются соли Fe2+, и катализаторный раствор направляют на регенерацию.
Несмотря на все эти мероприятия, ртуть все же теряется в виде шлама вместе с продуктами осмоления. Ее расход составляет 1,0—1,5 кг на 1 т ацетальдегида.
Развитие побочных реакций можно в значительной степени уменьшить, снижая концентрацию альдегида в реакционной жидкости. Это достигают путем непрерывной отдувки образовавшегося ацетальдегида в токе непревращенного ацетилена, который подают на реакцию в 2—2,5-кратном избытке.
С ртутным катализатором:
Схема реакционного узла жидкофазной гидратации ацетилена изображена на рис. 64, а. Реактором служит пустотелая колонна, футерованная кислотоупорными плитками и имеющая в верхней расширенной части слой насадки, играющей роль брызгоуловителя.
Реактор заполнен катализаторной жидкостью описанного состава, через кот. барботирует ацетилен, вводимый в низ колонны. Реактор не имеет поверхностей теплообмена и работает при 90°С автотермически: выделяющееся тепло отводится за счет испарения воды, кот. конденсируется в обратном холодильнике и возвращается в реактор. Часть катализаторного раствора непрерывно отводят на регенерацию и заменяют регенерированным раствором. Из газофазовой смеси, выходящей из реакционного узла, абсорбируют водой ацетальдегид, возвращают ацетилен на реакцию, а водный раствор ацетальдегида подвергают ректификации.
С нЕртутным катализатором
Газофазную гидратацию ацетилена проводят в колонном аппарате с несколькими сплошными слоями катализатора (см. рис. 64, б). Предварительно нагретую смесь водяных паров и ацетилена вводят в верхнюю часть реактора, а снизу отводят реакционные газы на конденсацию и разделение. Аппарат не имеет поверхностей теплообмена — съем выделяющегося тепла осуществляют за счет испарения водного конденсата, вбрызгиваемого в пространство между слоями катализатора. Они разделены, кроме того, колпачковыми тарелками, препятствующими попаданию брызг в последующие слои катализатора.
Кроме сравнительно низкого выхода ацетальдегида, существенным недостатком газофазного процессаявляется небольшой срок службы катализатора — его приходится регенерировать каждые 100 ч. С учетом этого общий срок службы катализатора составляет всего 2500 ч.