
- •Гидролиз и щелочное дегидрохлорирование хлорпроизводных
- •Получение эпихлоргидрина
- •Получение глицерина из эпихлоргидрина
- •Процессы гидратации и дегидратации
- •Механизм и кинетика реакций
- •Побочные реакции и селективность процесса
- •Прямая гидратация олефинов
- •Производство этанола
- •Гидратация ацетилена с ртутным катализатором
- •С нЕртутным катализатором
- •Гидратация ацетилена с нертутным катализатором
- •Процессы дегидратации Дегидратация с образованием соединений с ненасыщенной связью Получение изобутена
- •Дегидратация с образованием простых эфиров
- •Дегидратация карбоновых кислот
- •Технология процессов дегидрирования
- •Химия и теоретические основы процесса этерификации Процессы получения сложных эфиров (процессы этерификации)
- •Термодинамика реакций этерификации
- •Механизм и кинетика реакций
- •Получаемые продукты
- •Технология процесса этерификации. 4 вида процесса
- •Получение эфиров из хлорангидридов. Карбонаты и эфиры кислот фосфора Синтез хлоркарбонатов и карбонатов
- •Эфиры кислот фосфора
- •Синтез и превращения азотпроизводных кислот Азотпроизводные карбоновых кислот Амидирование
- •Дегидратация амидов и гидратация нитрилов
- •Гидролиз и этерификация нитрилов
- •Синтез и превращения азотпроизводных угольной кислоты
- •Синтез изоцианатов
- •Замещенные карбамиды
- •Технология производства меламина
- •Характеристика процессов алкилирования
- •Алкилирующие агенты и катализаторы
- •Энергетическая характеристика основных реакций алкилирования
- •Алкилирование по атому углерода, c-алкилирование Катализаторы
- •Последовательное алкилирование
- •Кинетика процесса
- •Побочные реакции: Смолообразование, Деструкция алкильных групп, Полимеризация олефинов
- •Термическая газификация топлив
- •Алкилирование фенолов
- •Получаемые продукты
- •Технология процесса
- •Алкилирование парафинов
- •Технология процесса
- •Алкилирование по атому кислорода, о-алкилирование
- •Синтез меркаптанов из олефинов и сероводорода
- •Алкилирование по атому азота (n-алкилирование)
- •Синтез аминов из хлорпроизводных
- •Получаемые продукты
- •Технология процесса
- •Синтез аминов из спиртов
- •Технология процесса
- •Синтез кремнийорганических соединений
- •Другие реакции алкилирования по атому кремния
- •Алюминийорганические соединения и синтезы на их основе
- •Алюминийорганический синтез Производство линейных α-олефинов
- •Синтез линейных первичных спиртов
- •Невошедшее
- •Реакционный узел
- •Т ехнологическая схема производства этил- и изопропилбензола
Дегидратация амидов и гидратация нитрилов
Дегидратация амидов кислот до нитрилов является равновесным и сильноэндотермическим процессом:
Равновесие смещается вправо только при 300—400°С, причем для ускорения реакции требуются катализаторы кислотного типа (фосфорная кислота на носителе, оксид алюминия, алюмосиликаты, фосфаты). Механизм дегидратации состоит в такой последовательности обратимых превращений:
Таким путем нитрилы можно получать и непосредственно из карбоновых кислот (без промежуточного выделения амидов)
в присутствии
дегидратирующих катализаторов
но промышленное значение этот метод может иметь только в тех случаях, когда карбоновая кислота дешевле и доступнее, чем ее нитрил.
Адиподинитрил CN(CH2)4 (динитрил адипиновой кислоты) является промежуточным продуктом при получении гексаметилендиамина из адипиновой кислоты:
Адиподинитрил можно получать в жидкой и газовой фазе. При газофазном процессе в качестве катализатора применяют фосфорную кислоту на носителе. Сначала через расплавленную адипиновую кислоту, нагретую в испарителе до 200°С, пропускают избыток аммиака. При этом происходит ступенчатое амидирование до моно- и диамида. Смесь паров этих веществ вместе с избыточным аммиаком поступает в контактный аппарат адиабатического типа, заполненный катализатором. В нем при 390—300°С и времени контакта ≈6 с завершается реакция амидирования и происходит дегидратация амида с образованием амндонитрила, адиподинитрила и побочного продукта —иминоцианоциклопента:
После использования тепла горячей реакционной смеси ее охлаждают, причем адиподинитрил, амидонитрил, иминоцианоциклопентан и вода конденсируются, а несконденсированный аммиак возвращают на реакцию. Воду отделяют от органических продуктов в сепараторе. Водный слой содержит значительное количество растворенного адиподинитрила, который лучше всего экстрагировать толуолом или ксилолами. Адиподинитрил выделяют в чистом виде (выход ≈80%) вакуум-перегонкой.
Другие способы получения адиподинитрила — хлорирование бутадиена-1,3 с замещением атомов хлора на цианогруппы и электрогидродимеризация акрилонитрила:
Все эти способы реализованы в промышленности. Кроме них разрабатывают методы, основанные на каталитическом присоединении HCN к бутадиену-1,3 и каталитической гидродимеризации акрилонитрила, но в этих случаях побочно образуется значительное количество изомерных динитрилов.
В противоположность дегидратации амидов, гидратация нитрилов в амиды кислот является экзотермической реакцией и при умеренных температурах практически необратимой. Наибольший интерес она представляет для синтеза акриламида из акрилонитрила:
Ранее этот процесс осуществляли с 80—85 %-Й серной кислотой, что приводило к излишнему расходу реагентов и образованию отходов сульфата аммония. Позднее было обнаружено, что эффективным катализатором является металлическая медь. Синтез осуществляют в водном растворе при 70—120°С; из реакционной массы отфильтровывают медь и отгоняют непревращенный акрилонитрил, рециркулируя их в реактор. Водный раствор акриламида упаривают до концентрации 30—50 % или до получения кристаллического акриламид:
Акриламид легко полимеризуется в водорастворимый полиакриламид, который является ценным флокулянтом, широко применяемым для разделения водных суспензий, при флотации, очистке сточных вод и др.