Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория (часть 2) / Авиационные приборы и системы (Ульяновское конструкторское бюро приборостроения).doc
Скачиваний:
711
Добавлен:
17.03.2015
Размер:
5.01 Mб
Скачать

4.4. Коррекция погрешностей восприятия статического давления

Погрешность восприятия статического давления (Рст) складывается из погрешности изолированного приемника и дополнительных погрешностей, связанных с искажениями воздушного потока в том месте фюзеляжа, где установлен приемник статического давления (рис. 3.11). Согласно НЛГС и американскому стандарту ТsO-C16 инструментальная погрешность изолированного приемника статического давления не должна превышать ~ 0,05qв диапазоне измеряемых скоростей. Например, при скорости полета 100 км/ч погрешность должна быть не более 0,2 мм рт. ст.; при скорости 400 км/ч – 0,8 мм рт. ст.; при скорости 500 км/ч – 1 мм рт. ст.; при скорости 600 км/ч – 1,2 мм рт. ст.; при скорости 800 км/ч – 1,5 мм рт. ст.

При установке приемника Рстпогрешность может возрасти до недопустимых величин. Для гражданских самолетов допустимая суммарная погрешность приемникаРств переводе на скорость полета не должна превышать 10 км/ч [4]. Достигается приемлемая точность по давлениюРстпутем выноса приемника за пределы фюзеляжа при скорости полетаМ> 0,95 или путем инструментальной коррекции при полете со скоростямиМ ≤ 0,95.

Наиболее распространенными являются два метода коррекции этой погрешности: 1 – коррекция в механическом указателе высоты или в системе СВС и 2 – аэродинамическая коррекция непосредственно в самом приемнике Рст.

Для первого случая коррекции каждый приемник Рстдолжен иметь тарировочную таблицу поправок на конкретном самолете. Простейшим случаем коррекции погрешностей поРстявляется поправка показаний барометрического высотомера по таблице, которая находится в поле зрения каждого пилота.

Самым привлекательным методом является коррекция за счет конструктивных мер в самом приемнике и установке его в том месте фюзеляжа, где помехи известны и минимальны (см. рис. 2.11, рис. 2.12, рис. 3.14).

Коррекция погрешности восприятия Рств современных СВС осуществляется следующим образом. В память цифрового вычислителя вводятся стандартные характеристики ΔРст=f(M).

Рис. 4.35. Стандартная зависимость погрешности приемника статического давления на борту самолета

Согласно нормам АРИНК-706 в дозвуковых СВС должно быть 16 стандартных характеристик, что и сделано в СВС-85 для гражданских российских самолетов. При этом к стандартным характеристикам предъявляются следующие требования:

1 – погрешность приемника Рстзависит либо от числаМ, либо от отношенияРд/ Рст;

2 – при значении М0,2 погрешность ΔРст≈ 0;

3 – максимальное значение погрешности при М= 1 должно быть не более 0,04q;

4 – характеристика ΔРст=f(М) должна быть достаточно плавной, без перегибов;

5 – погрешность после коррекции по высоте полета должна быть не более 1,5 м при Н = 7500 м;

6 – смена характеристики производится изготовителем СВС по запросу заказчика после удовлетворения требований к ней.

В СВС с аэродинамической коррекцией могут быть точные и загрубленные каналы по выходным параметрам. Приведенные выше формульные зависимости первичных параметров и параметров движения видоизменяются: дополнительно появляются зависимости, в которых учитывается скомпенсированное значение Рст. Вводятся символы: с – скомпенсированный, нс – нескомпенсированный параметр.

Математическая модель современной СВС в общем виде следующая.

– (4.29)

скомпенсированное полное значение;

– (4.30)

нескомпенсированный скоростной напор;

– (4.31)

скомпенсированный скоростной напор;

– (4.32)

скомпенсированная индикаторная скорость при vинд.сao;

– (4.33)

нескомпенсированное отношение давлений РпиРст;

– (4.34)

скомпенсированное отношение давлений РпиРст;

– (4.35)

нескомпенсированное отношение давлений РдиРст;

– (4.36)

скомпенсированное отношение давлений РдиРст;

– (4.37)

скомпенсированная температура торможения;

– (4.38)

скомпенсированная температура наружного воздуха;

– (4.39)

нескомпенсированная истинная скорость;

скомпенсированная истинная скорость;

– (4.40)

зависимость скомпенсированного давления Pдот скомпенсированной истинной скорости.

Здесь приняты обозначения: a– скорость звука,aо– значение скорости звука при нормальных условиях по стандартной атмосфере,k– отношение теплоемкостей,Рст о– нормальное атмосферное давление.

До полной математической модели СВС согласно структурным схемам рис. 4.1 и рис. 4.3 тут не хватает математических моделей αистиβист , которые рассматриваются в шестой главе.

В связи с тем, что при измерении давления имеют дело с силами, то компенсационную схему называют схемой силовой компенсации. Возможно осуществление множества разновидностей схем и конструкций, построенных на данной схеме, однако все они содержат элементы общего назначения: чувствительный элемент – сильфон 1, нуль-орган 2, усилитель 3, обратную связь (эталон) 4, выходное устройство 5.

Если сравнить структурную схему компенсационного датчика со структурной схемой позиционного датчика давления (рис. 4.29), то увидим принципиальную разницу между ними. В компенсационной схеме большее число элементов охвачено основной обратной связью. Полное уравнение схемы рис. 4.28 имеет вид [39]

. (4.25)

Установившееся значение выходной величины yимеет вид (t→ ∞)

. (4.26)

Полное уравнение движения по схеме рис. 4.29 имеет вид

, (4.27)

k22

Рис. 4.29. Структурная схема электромеханического датчика давления, построенного на схеме с использованием хода чувствительного элемента 1 – чувствительный элемент, 2 – вторичный преобразователь, 3 – усилитель с двигателем, 4 – основная обратная связь (электрическая), 5 – выходное устройство

а установившееся значение выходной величины y:

. (4.28)

Сравнивая уравнения (4.26) и (4.28), находим свойство схемы силовой компенсации, заключающееся в том, что в ней на результат измерения влияет меньшее число элементов. Параметры нуль - органа в линейном приближении не оказывают влияния на точность измерения. Практически это свойство тем точнее реализуется, чем больше модель датчика приближается к линейной. В идеальном случае это значит, что в измерительной цепи датчика не должно быть элементов с зоной нечувствительности, а замкнутая цепь следящей системы должна быть астатической.

Устройство нуль - органа работает практически с незначительными перемещениями (в одной точке) в пределах своей характеристики. В связи с этим элементы следящей системы можно подобрать более точно, и работает она более точно. Это второе свойство компенсационной схемы.

В схеме же рис. 4.29 характеристики вторичного преобразователя 2 существенно влияют на качество измерения, как было показано выше.

В позиционной схеме рис. 4.29 чувствительный элемент выполняет очень сложную функцию – принимает информацию об изменении давления и преобразует ее в перемещение нужной величины. Он является сложным преобразователем и движителем одновременно. От него требуются характеристики: высокая чувствительность, отсутствие гистерезиса, стабильность во времени.

Функции чувствительного элемента в компенсационной схеме проще – преобразовывать давление в силу, не совершая значительных перемещений рабочего центра. Идеально – это поршень без трения. Такие задачи, как передавать информацию в решающее устройство в виде перемещения, стабильность во времени, иметь малый гистерезис в этой схеме переносится на элемент обратной связи (механическая пружина, электромагнит). В этом заключается третье свойство компенсационной силовой схемы.

На рис. 4.30 и рис. 4.31 приведены принципиальная и конструктивная схемы компенсационного датчика давления с механической точеной высокоточной пружиной в качестве эталона силы, который был разработан и изготовлен УКБП.

Новизна этого датчика заключается в том, что с целью повышения виброустойчивости, точеная пружина выполнена с витками переменной жесткости.

Рис. 4.30. Принципиальная схема компенсационного датчика давления:

1 – чувствительный элемент, 2 – нуль-орган, 3 – усилитель с двигателем, 4 – пружина, 5 – выходное устройство, 6 – винты, 7 – редуктор, 8 – противовес, 9 – шарнир, 10 – упор

В современных датчиках давления для СВС в качестве эталона силы применяется катушка с намоткой, помещенная в поле постоянного магнита (рис. 4.32). Чувствительным элементом является сильфон. Измеряемое давление поступает в сильфон, вызывает незначительную деформацию, коромысло 7 поворачивается, изменяется индуктивное сопротивление катушек 1, включенных в схему моста. Сигнал разбаланса поступает в усилитель-демодулятор 2, усиливается и поступает в виде постоянного тока в катушку 4, жестко связанную с коромыслом 7. Взаимодействие электрического тока катушки 4 с полем магнита 3 приводит к появлению силы, которая уравновешивает силу сильфона 6. Катушки нуль-органа 1 включены противоположно действию силы сильфона.

При малых деформациях сильфона его жесткость практически постоянна, а значит ток, протекающий в катушке 4, пропорционален измеряемому давлению. Выходным сигналом датчика является напряжение постоянного тока, снимаемое с резистора 5, который включен последовательно с намоткой катушки 4.

Рис. 4.31. Конструктивная схема компенсационного датчика давления

Рис. 4.32. Принципиальная схема компенсационного датчика давления:

1 – нуль-орган; 2 – усилитель; 3 – постоянный магнит; 4 – силовая катушка; 5 – резистор; 6 – сильфон; 7 – коромысло; 8 – безлюфтовый упругий шарнир

Датчиками давления для СВС на схеме силовой компенсации занимаются несколько известных в мире фирм. Но наибольших результатов достигла французская фирма Кроузет (Crouzet). Ее датчики давления типа 43 и 44 для измерения статического и дифференциального давлений имеют следующие характеристики: погрешность от диапазона ± 0,01 %, разрешающая способность 0,00075 мм рт. ст., гистерезис менее 0,0075 мм рт. ст., напряжение питания ± 15 В, потребляемая мощность 1 – 2 Вт, масса 0,26 кг, габаритные размеры.

К недостаткам компенсационных датчиков давления в целом следует отнести то, что выходным сигналом ее является непрерывный аналоговый сигнал. Для его использования в цифровых СВС требуется применение дополнительно высокоразрядного АЦП, что приводит к потере точности и удорожанию системы.

Полупроводниковый датчик давления

С позиций принятой здесь методики оценки принципа действия датчиков давления, полупроводниковый датчик имеет все признаки типовой структурной схемы рис. 4.7. В нем имеется упругий чувствительный элемент, вторичный преобразователь и более вероятнее по сравнению с другими датчиками в нем имеется электронный блок обработки сигналов.

Особенностью полупроводникового датчика давления является то, что его чувствительный элемент к давлению изготавливается из полупроводникового материала, например, кремния или сапфира. В качестве вторичного преобразователя применяется также полупроводниковый тензорезистор р-типа проводимости, например. Тензорезистор по полупроводниковой планарной технологии вживляется в тело мембраны и соединяются с ним на молекулярном уровне во избежание появления эффекта ползучести характеристики. Упругая мембрана иногда изготавливается из монокристалла в виде колпачка или в виде пластины.

Рабочие тензорезисторы располагаются вдоль радиуса мембраны для получения максимальной чувствительности. При действии давления мембрана деформируется, ее незначительное перемещение передается на тензорезисторы, удельное сопротивление которых изменяется пропорционально измеряемому давлению.

Чтобы получить на выходе датчика электрический сигнал, его тензорезисторы подключаются к электрическому напряжению по схеме уравновешенного моста Уитстона. Для полупроводникового датчика предпочтительным напряжением является напряжение постоянного тока, что исключает балансировку моста по фазе и вредные помехи. Мост электрически уравновешивается при начальном значении измеряемого давления. Дальнейшие изменения напряжения (тока) с моста будут находиться в диапазоне измеряемого давления.

Особенностью полупроводникового тензорезистора является его высокая чувствительность к деформации по сравнению с проволочными. В образовании тензоэффекта участвуют геометрические и объемные изменения полупроводникового тензорезистора под действием деформации упругого чувствительного элемента. Причем геометрические изменения приводят только к 2 % изменения электрического сопротивления тензорезистора. Остальные 98 % – за счет объемных изменений [42].

В связи с чрезвычайно малыми перемещениями и деформациями упругого чувствительного элемента в процессе измерения его стали называть твердотельным. Его перемещения находятся на уровне 10-9м. Это чрезвычайно малые перемещения, которые, тем не менее, необходимо удерживать при достижении сверхвысоких точностей.

На рис. 4.33 приведена электрическая схема полупроводникового датчика давления. Она представляет собой четырехплечий мост Уитстона с элементами компенсации по температуре и его балансировки. Все элементы схемы могут располагаться в теле чувствительного элемента, кроме согласующего выход R10. Однако это уже касается интегрального полупроводникового датчика давления.

Полупроводниковыми твердотельными датчиками давления с упругой мембраной из монокристалла кремния успешно занимается форма Хонеувелл (Honeywell, США) (рис. 4.34).

Рис. 4.33. Электрическая схема датчика давления с полупроводниковыми тензорезисторами:

R1,R2,R3,R4– полупроводниковые тензорезисторы;R5– резистор для согласования внутреннего сопротивления моста;R6,R7– резисторы для балансировки моста;R8,R9– резисторы для температурной компенсации моста;R10– резистор для согласования выходного сигнала

Несмотря на очевидные преимущества цифрового кодового сигнала в некоторых современных датчиках давления предусматриваются и аналоговые выходы, как это сделано в схеме на рис. 4.34. Считается, что самым надежным является сигнал непосредственно с резистивного моста.

Рис. 4.34. Функциональная схема полупроводникового датчика давления:

1 – мембрана; 2 – элементы моста на мембране; 3 – мост; 4 – усилитель; 5 – фильтр; 6 ‑ компаратор напряжения; 7 ‑ преобразователь-генератор; 8 – усилитель; 9 – источник постоянного тока

Наиболее перспективными датчиками для СВС военных и гражданских летательных аппаратов являются: полупроводниковый с использованием тензорезистивного и пьезоэлектрического эффектов; вибрационно-частотный; емкостный. Основная погрешность датчиков должна быть не более 0,005 – 0,01 % от измеряемого давления; потребляемая мощность не более 1 – 1,5 Вт; средняя наработка на отказ не менее 40000 часов; назначенный ресурс не менее 25000 часов; календарный срок эксплуатации не менее 25 лет; масса порядка 0,25 кг в минимальном габаритном объеме. Только такие характеристики датчиков давления позволяют реализовать требования НЛГС к параметрам движения в СВС.

Соседние файлы в папке Теория (часть 2)