
- •Понятие, задачи, предмет, метод, содержание и компетенции дисциплины «Ветеринарная генетика и биостатистика».
- •История развития генетики, вклад в науку отечественных ученых.
- •Методы исследований в генетике, её связь с другими науками.
- •Достижения генетики и её роль в решении практических задач народного хозяйства.
- •Строение клетки животных. Функции органоидов цитоплазмы и ядра.
- •Морфология хромосом. Кариотипы диких и промысловых животных.
- •Образование половых клеток животных. Особенности мужских и женских гамет.
- •Характеристика мейоза.
- •Оплодотворение у животных. Генетическая сущность оплодотворения.
- •2. Молекулярные основы наследственности.
- •2.1 Строение днк и её синтез в клетках.
- •2.2 Строение рнк и ее синтез.
- •2.3 Регуляция генной экспрессии у эукариот. Современные представления о гене как единице наследственности.
- •2.5 Генетический код и его свойства: триплетность, неперекрываемость, вырожденность и универсальность. Коллинеарность гена и кодируемого им белка.
- •2.6 Регуляция активности генов у прокариот. Теория ф. Жакоба и ж. Моно о механизме регуляции действия генов. Адаптивный синтез ферментов. Оперон.
- •2.7 Структурные и регуляторные гены у прокариот. Негативная и позитивная индукция и репрессия генной активности у прокариот.
- •2.8 Общая характеристика онтогенеза. Влияние генов и среды на развитие признаков. Биогенетический закон Мюллера-Геккеля.
- •2.9 Роль генетической информации матери на начальных стадиях развития зиготы.
- •2.10 Критические периоды в онтогенезе животных.
- •2.11 Регуляция синтеза белков в процессе онтогенеза. Пенетрантность и экспрессивность генов.
- •3.1 Особенности гибридологического метода, разработанного Менделем. Генетическая символика
- •3.2 Действия законов Менделя в моногибридных скрещиваниях при полном и неполном доминировании
- •3.3. Действия законов Менделя при дигибридных скрещиваниях
- •3.4 Аллельные гены и аллеломорфные признаки. Анализирующее скрещивание и его применение
- •3.5. Типы взаимодействия неаллельных генов. Характеристика комплементарного взаимодействия и эпистаза.
- •3.6. Полимерное взаимодействие генов и его роль в формировании качественных и количественных признаков
- •3.7. Особенности сцепленного наследования генов
- •3.8 Кроссинговер как основа неполного сцепления генов. Расчет расстояния между генами
- •4.2 Полиплоидия у растений и животных
- •4.3.Гетероплоидия и хромосомные перестройки
- •4.4.Сущность генных мутаций и причины их возникновения
- •4.5 Процесс возникновения мутаций. Репарация мутаций
- •4.6 Понятие о биометрии и основных ее направлений
- •4.8 Показатели, характеризующие степень изменчивости признака у животных
- •4.9 Типы распределения варьирующих признаков (нормальное, биномиальное, асимметрическое, эксцессивное, трансгрессивное)
- •4.10 Определение статистических ошибок и достоверности разности между средними двух выборок
- •4.11 Использование критерия хи-квадрат
- •4.12 Биометрические показатели связи между признаками. Свойства коэффициента корреляции.
- •4.13 Основы регрессионного анализа
- •4.14 Основы дисперсионного анализа
- •4.15 Взаимодействие генотипа и среды. Влияние на коэффициент наследуемости (h2) и повторяемости (rw) генотипических и паратипических факторов.
- •5.1 Использование биотехнологии в ветеренарии
- •5.2 Использование биотехнологии
- •5.3 Строение вирусов и бактерий.
- •5.4 Обмен генетическим материалом у прокариот: конъюгация, трансдукции, трансфрмация.
- •5.5 Биотехнология. Цели и задачи.
- •5.6 Генная инженерия. Получение генов путем синтеза – химического и ферментативного. Ферменты – главные инструменты генетической инженерии (обратная транскриптаза, рестриктирующая эндонуклеаза и др.)
- •5.7 Рекомбинантные днк. Переносчики генетической информации (векторы).
- •5.8 Клеточная инженерия. Культивирование клеток. Гибридизация соматических клеток.
- •5.9 Гибридомная технология получения моноклональных антител.
- •5. Основы иммуногенетики и биотехнологии
- •6. Генетика популяций.
- •6.1 Видообразование. Популяция как единица эволюции.
- •6.3 Особенности популяций и чистых линий. Эффективность отбор в популяциях и чистых линиях.
- •6.4 Структура свободного размножающихся популяций. Формула Харди Вайнберга и ее использование в селекции.
- •6.5 Изменение структуры популяций при отборе
- •6.6 Изменение структуры популяций в процессе мутаций и при миграции животных
- •6.7 Изменение структуры популяций при скрещиваниях и инбридинге
- •6.8 Генетические основы инбридинга и инбредной депрессии. Влияние инбридинга на структуру популяций.
- •6.9 Гетерозис и его генетические причины. Особенности проявления гетерозиса при различных вариантах скрещивания.
5.5 Биотехнология. Цели и задачи.
Биотехнология – это наука об использовании живых организмов и биологических процессов в производстве. Цель: получение продуктов из биологических объектов или с их применением, а также воспроизведение биоэффектов, не встречающихся в природе. В качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, животные и растительные клетки, а также организм животных, человека или растений. Задачи:
Поддержание и активизация путей обмена клеток, ведущих к накоплению целевых продуктов при заметном подавлении других реакций обмена у культивируемого организма.
Получение клеток и их составных частей для направленного изменения сложных молекул.
Углубление и совершенствование генетической инженерии, включающей рДНК-биотехнологию и клеточную инженерию, с целью получения особо ценных результатов в фундаментальных и прикладных разработках.
Создание безотходных и экологически безопасных биотехнологических процессов.
Совершенствование и оптимизация аппаратурного оснащения биотехнологических процессов с целью достижения максимальных выходов конечных продуктов при культивировании лекарственных видов с измененной наследственностью, полученными методами клеточной и генной инженерии.
Повышение технико-экономических показателей биотехнологических процессов по сравнению с существующими параметрами.
5.6 Генная инженерия. Получение генов путем синтеза – химического и ферментативного. Ферменты – главные инструменты генетической инженерии (обратная транскриптаза, рестриктирующая эндонуклеаза и др.)
Генная инженерия – раздел биотехнологии, связанный с целенаправленным конструированием новых комбинаций генетического материала, способного размножаться в клетке и синтезировать определенный продукт. Генная инженерия решает определенные задачи: получение генов путем их синтеза или выделения из клеток, получение рекомбинантных молекул ДНК, клонирование генов или генетических структур и синтез чужеродного белка.
Химико-ферментативный синтез нужного гена. На первом этапе химическим синтезом получают короткие олигонуклеотиды, которые затем соединяют при помощи фермента лигазы. В результате получают нужный ген, не имеющий лишних участков, полностью соответствующий природному гену. Кроме того, в процессе синтеза в его структуру можно встроить необходимые регуляторные элементы, ввести какие-то замены и т. д. Однако описанный метод применим лишь в том случае, когда известна структура нужного гена или хотя бы структура кодируемого им белка. К недостаткам данного способа относится еще и трудоемкость.
В клетках бактерий существуют ферменты, способные разрезать молекулу ДНК с трого определенных местах. Ферменты эти называются рестриктирующими эндонуклеазами или рестриктазами, а процесс «разрезания» молекулы ДНК называется рестрикцией. Участок ДНК, узнаваемый определенной рестриктазой, включает специфическую последовательность из 6-8 пар оснований, являющихся палиндромом. Палиндромом называется последовательность ДНК, которая считывается одинаково в обоих направлениях, начиная от 3-конца каждой цепи. Например, рестриктаза E.coli под названием EcoRI узнает последовательность –Г ААТТ Ц-- / --Ц ТТАА Г—и, прикрепляясь к ней, делает по одному однонитевому надрезу с обеих сторон,т.е. разрезает ее в симметричных участках. В результате двухцепочечная молекула ДНК, если была кольцевой, вследствие разрыва приобретает линейное строение. На краях молекулы образуются липкие концы, представленные однонитевыми участками из 4 нуклеотидов: на одном конце будет последовательность ААТТ, на другом – ТТАА. При наличии липких концов молекла ДНК из линейной формы вновь способна замкнуться в кольцо без дополнительной обработки. Были обнаружены рестриктазы, узнающие самые разнообразные последовательности нуклеотидов. Например, рестриказа EcoRIIузнает последоватлеьность ЦЦТГГ.